Advertisement
Research Article|Articles in Press

CAMKK2 is upregulated in primary human osteoarthritis and its inhibition protects against chondrocyte apoptosis

  • Author Footnotes
    a JD and AS contributed equally to this study.
    J.E. Dilley
    Footnotes
    a JD and AS contributed equally to this study.
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • Author Footnotes
    a JD and AS contributed equally to this study.
    A. Seetharam
    Footnotes
    a JD and AS contributed equally to this study.
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • X. Ding
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • M.A. Bello
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • J. Shutter
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • D.B. Burr
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • R.M. Natoli
    Affiliations
    Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • T.O. McKinley
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • U. Sankar
    Correspondence
    Address correspondence and reprint requests to: U. Sankar, 635 Barnhill Drive, MS-5035, Indianapolis, IN 46202, USA. Tel: 1-317-274-7870; Fax: 1-317-856-5710.
    Affiliations
    Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

    Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
    Search for articles by this author
  • Author Footnotes
    a JD and AS contributed equally to this study.
Published:February 27, 2023DOI:https://doi.org/10.1016/j.joca.2023.02.072

      Summary

      Objective

      To investigate the role of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in human osteoarthritis.

      Materials and methods

      Paired osteochondral plugs and articular chondrocytes were isolated from the relatively healthier (intact) and damaged portions of human femoral heads collected from patients undergoing total hip arthroplasty for primary osteoarthritis (OA). Cartilage from femoral plugs were either flash frozen for gene expression analysis or histology and immunohistochemistry. Chondrocyte apoptosis in the presence or absence of CAMKK2 inhibition was measured using flow cytometry. CAMKK2 overexpression and knockdown in articular chondrocytes were achieved via Lentivirus- and siRNA-mediated approaches respectively, and their effect on pro-apoptotic and cartilage catabolic mechanisms was assessed by immunoblotting.

      Results

      CAMKK2 mRNA and protein levels were elevated in articular chondrocytes from human OA cartilage compared to paired healthier intact samples. This increase was associated with elevated catabolic marker matrix metalloproteinase 13 (MMP-13), and diminished anabolic markers aggrecan (ACAN) and type II collagen (COL2A1) levels. OA chondrocytes displayed enhanced apoptosis, which was suppressed following pharmacological inhibition of CAMKK2. Levels of MMP13, pSTAT3, and the pro-apoptotic marker BAX became elevated when CAMKK2, but not its kinase-defective mutant was overexpressed, whereas knockdown of the kinase decreased the levels of these proteins.

      Conclusions

      CAMKK2 is upregulated in human OA cartilage and is associated with elevated levels of pro-apoptotic and catabolic proteins. Inhibition or knockdown of CAMKK2 led to decreased chondrocyte apoptosis and catabolic protein levels, whereas its overexpression elevated them. CAMKK2 may be a therapeutic target to prevent or mitigate human OA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Litwic A.
        • Edwards M.H.
        • Dennison E.M.
        • Cooper C.
        Epidemiology and burden of osteoarthritis.
        Br Med Bull. 2013; 105 (Epub 2013/01/23. PubMed PMID: 23337796; PubMed Central PMCID: PMCPMC3690438): 185-199https://doi.org/10.1093/bmb/lds038
        • Pasquale M.K.
        • Louder A.M.
        • Cheung R.Y.
        • Reiners A.T.
        • Mardekian J.
        • Sanchez R.J.
        • et al.
        Healthcare utilization and costs of knee or hip replacements versus pain-relief injections.
        Am Health Drug Benefits. 2015; 8 (Epub 2015/11/12. PubMed PMID: 26557232; PubMed Central PMCID: PMCPMC4636277): 384-394
        • Yao J.J.
        • Hevesi M.
        • Visscher S.L.
        • Ransom J.E.
        • Lewallen D.G.
        • Berry D.J.
        • et al.
        Direct inpatient medical costs of operative treatment of periprosthetic hip and knee infections are twofold higher than those of aseptic revisions.
        J Bone Joint Surg Am. 2021; 103 (Epub 2020/12/01. PubMed PMID: 33252589; PubMed Central PMCID: PMCPMC8327701): 312-318https://doi.org/10.2106/JBJS.20.00550
        • Chen D.
        • Shen J.
        • Zhao W.
        • Wang T.
        • Han L.
        • Hamilton J.L.
        • et al.
        Osteoarthritis: toward a comprehensive understanding of pathological mechanism.
        Bone Res. 2017; 5 (Epub 2017/02/06. PubMed PMID: 28149655; PubMed Central PMCID: PMCPMC5240031)16044https://doi.org/10.1038/boneres.2016.44
        • Robinson W.H.
        • Lepus C.M.
        • Wang Q.
        • Raghu H.
        • Mao R.
        • Lindstrom T.M.
        • et al.
        Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis.
        Nat Rev Rheumatol. 2016; 12 (Epub 2016/08/20. PubMed PMID: 27539668; PubMed Central PMCID: PMCPMC5500215): 580-592https://doi.org/10.1038/nrrheum.2016.136
        • Perez-Garcia S.
        • Carrion M.
        • Gutierrez-Canas I.
        • Villanueva-Romero R.
        • Castro D.
        • Martinez C.
        • et al.
        Profile of matrix-remodeling proteinases in osteoarthritis: impact of fibronectin.
        Cells. 2019; 9 (Epub 2019/12/28. PubMed PMID: 31877874; PubMed Central PMCID: PMCPMC7017325)https://doi.org/10.3390/cells9010040
        • Hashimoto S.
        • Ochs R.L.
        • Komiya S.
        • Lotz M.
        Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis.
        Arthritis Rheum. 1998; 41 (Epub 1998/09/29. PubMed PMID: 9751096): 1632-1638https://doi.org/10.1002/1529-0131(199809)41:9<1632:AID-ART14>3.0.CO;2-A
        • Heraud F.
        • Heraud A.
        • Harmand M.F.
        Apoptosis in normal and osteoarthritic human articular cartilage.
        Ann Rheum Dis. 2000; 59 (Epub 2000/11/23. PubMed PMID: 11087699; PubMed Central PMCID: PMCPMC1753049): 959-965https://doi.org/10.1136/ard.59.12.959
        • Thomas C.M.
        • Fuller C.J.
        • Whittles C.E.
        • Sharif M.
        Chondrocyte death by apoptosis is associated with the initiation and severity of articular cartilage degradation.
        Int J Rheum Dis. 2011; 14 (Epub 2011/04/27. PubMed PMID: 21518319): 191-198https://doi.org/10.1111/j.1756-185X.2010.01578.x
        • Campbell K.J.
        • Tait S.W.G.
        Targeting BCL-2 regulated apoptosis in cancer.
        Open Biol. 2018; 8 (Epub 2018/05/18. PubMed PMID: 29769323; PubMed Central PMCID: PMCPMC5990650)https://doi.org/10.1098/rsob.180002
        • Miao G.
        • Zang X.
        • Hou H.
        • Sun H.
        • Wang L.
        • Zhang T.
        • et al.
        Bax targeted by miR-29a regulates chondrocyte apoptosis in osteoarthritis.
        Biomed Res Int. 2019; 2019 (Epub 2019/04/18. PubMed PMID: 30993110; PubMed Central PMCID: PMCPMC6434297)1434538https://doi.org/10.1155/2019/1434538
        • Aigner T.
        • Kim H.A.
        Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration.
        Arthritis Rheum. 2002; 46 (Epub 2002/09/05. PubMed PMID: 12209500): 1986-1996https://doi.org/10.1002/art.10554
        • Bobinac D.
        • Spanjol J.
        • Zoricic S.
        • Maric I.
        Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans.
        Bone. 2003; 32 (Epub 2003/04/02. PubMed PMID: 12667556): 284-290https://doi.org/10.1016/s8756-3282(02)00982-1
        • Williams J.N.
        • Sankar U.
        CaMKK2 signaling in metabolism and skeletal disease: a new axis with therapeutic potential.
        Curr Osteoporos Rep. 2019; 17 (Epub 2019/05/23. PubMed PMID: 31115859; PubMed Central PMCID: PMCPMC6625911): 169-177https://doi.org/10.1007/s11914-019-00518-w
        • Anderson K.A.
        • Ribar T.J.
        • Lin F.
        • Noeldner P.K.
        • Green M.F.
        • Muehlbauer M.J.
        • et al.
        Hypothalamic CaMKK2 contributes to the regulation of energy balance.
        Cell Metab. 2008; 7 (Epub 2008/05/08. PubMed PMID: 18460329): 377-388https://doi.org/10.1016/j.cmet.2008.02.011
        • Racioppi L.
        • Noeldner P.K.
        • Lin F.
        • Arvai S.
        • Means A.R.
        Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses.
        J Biol Chem. 2012; 287 (Epub 2012/02/16. PubMed PMID: 22334678; PubMed Central PMCID: PMCPMC3322820): 11579-11591https://doi.org/10.1074/jbc.M111.336032
        • Mevel E.
        • Shutter J.A.
        • Ding X.
        • Mattingly B.T.
        • Williams J.N.
        • Li Y.
        • et al.
        Systemic inhibition or global deletion of CaMKK2 protects against post-traumatic osteoarthritis.
        Osteoarthritis Cartilage. 2022; 30 (Epub 2021/09/11. PubMed PMID: 34506942; PubMed Central PMCID: PMCPMC8712369): 124-136https://doi.org/10.1016/j.joca.2021.09.001
        • Kellgren J.H.
        • Lawrence J.S.
        Radiological assessment of osteo-arthrosis.
        Ann Rheum Dis. 1957; 16 (Epub 1957/12/01. PubMed PMID: 13498604; PubMed Central PMCID: PMCPMC1006995): 494-502https://doi.org/10.1136/ard.16.4.494
        • Pritzker K.P.
        • Gay S.
        • Jimenez S.A.
        • Ostergaard K.
        • Pelletier J.P.
        • Revell P.A.
        • et al.
        Osteoarthritis cartilage histopathology: grading and staging.
        Osteoarthritis Cartilage. 2006; 14 (Epub 2005/10/26. PubMed PMID: 16242352): 13-29https://doi.org/10.1016/j.joca.2005.07.014
        • Waldstein W.
        • Perino G.
        • Gilbert S.L.
        • Maher S.A.
        • Windhager R.
        • Boettner F.
        OARSI osteoarthritis cartilage histopathology assessment system: a biomechanical evaluation in the human knee.
        J Orthop Res. 2016; 34 (Epub 2015/08/08. PubMed PMID: 26250350): 135-140https://doi.org/10.1002/jor.23010
        • Pauli C.
        • Whiteside R.
        • Heras F.L.
        • Nesic D.
        • Koziol J.
        • Grogan S.P.
        • et al.
        Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development.
        Osteoarthritis Cartilage. 2012; 20: 476-485https://doi.org/10.1016/j.joca.2011.12.018
        • Pearson R.G.
        • Kurien T.
        • Shu K.S.S.
        • Scammell B.E.
        Histopathology grading systems for characterisation of human knee osteoarthritis – reproducibility, variability, reliability, correlation, and validity.
        Osteoarthritis Cartilage. 2011; 19: 324-331https://doi.org/10.1016/j.joca.2010.12.005
        • Valiya Kambrath A.
        • Williams J.N.
        • Sankar U.
        An improved methodology to evaluate cell and molecular signals in the reparative callus during fracture healing.
        J Histochem Cytochem. 2020; 68 (Epub 2020/01/14. PubMed PMID: 31928129; PubMed Central PMCID: PMCPMC7045301): 199-208https://doi.org/10.1369/0022155419900915
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25 (Epub 2002/02/16. PubMed PMID: 11846609): 402-408https://doi.org/10.1006/meth.2001.1262
        • Green M.F.
        • Anderson K.A.
        • Means A.R.
        Characterization of the CaMKKbeta-AMPK signaling complex.
        Cell Signal. 2011; 23 (Epub 2011/08/03. PubMed PMID: 21807092; PubMed Central PMCID: PMCPMC3184326): 2005-2012https://doi.org/10.1016/j.cellsig.2011.07.014
        • Green M.F.
        • Scott J.W.
        • Steel R.
        • Oakhill J.S.
        • Kemp B.E.
        • Means A.R.
        Ca2+/Calmodulin-dependent protein kinase kinase beta is regulated by multisite phosphorylation.
        J Biol Chem. 2011; 286 (Epub 2011/06/15. PubMed PMID: 21669867; PubMed Central PMCID: PMCPMC3151052): 28066-28079https://doi.org/10.1074/jbc.M111.251504
        • Todd L.R.
        • Damin M.N.
        • Gomathinayagam R.
        • Horn S.R.
        • Means A.R.
        • Sankar U.
        Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells.
        Mol Biol Cell. 2010; 21 (Epub 2010/02/12. PubMed PMID: 20147447; PubMed Central PMCID: PMCPMC2847526): 1225-1236https://doi.org/10.1091/mbc.e09-11-0937
        • Hurley R.L.
        • Anderson K.A.
        • Franzone J.M.
        • Kemp B.E.
        • Means A.R.
        • Witters L.A.
        The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases.
        J Biol Chem. 2005; 280 (Epub 2005/06/28. PubMed PMID: 15980064): 29060-29066https://doi.org/10.1074/jbc.M503824200
        • Burrage P.S.
        • Mix K.S.
        • Brinckerhoff C.E.
        Matrix metalloproteinases: role in arthritis.
        Front Biosci. 2006; 11 (Epub 2005/09/09. PubMed PMID: 16146751): 529-543https://doi.org/10.2741/1817
        • Akeson G.
        • Malemud C.J.
        A role for soluble IL-6 receptor in osteoarthritis.
        J Funct Morphol Kinesiol. 2017; 2 (Epub 2017/08/02. PubMed PMID: 29276788): 27https://doi.org/10.3390/jfmk2030027
        • Wiegertjes R.
        • van de Loo F.A.J.
        • Blaney Davidson E.N.
        A roadmap to target interleukin-6 in osteoarthritis.
        Rheumatology. 2020; 59: 2681-2694https://doi.org/10.1093/rheumatology/keaa248
        • Sherwood J.C.
        • Bertrand J.
        • Eldridge S.E.
        • Dell'Accio F.
        Cellular and molecular mechanisms of cartilage damage and repair.
        Drug Discov Today. 2014; 19: 1172-1177https://doi.org/10.1016/j.drudis.2014.05.014
        • Latourte A.
        • Cherifi C.
        • Maillet J.
        • Ea H.K.
        • Bouaziz W.
        • Funck-Brentano T.
        • et al.
        Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis.
        Ann Rheum Dis. 2017; 76 (Epub 2016/11/01. PubMed PMID: 27789465): 748-755https://doi.org/10.1136/annrheumdis-2016-209757
        • Aida Y.
        • Honda K.
        • Tanigawa S.
        • Nakayama G.
        • Matsumura H.
        • Suzuki N.
        • et al.
        IL-6 and soluble IL-6 receptor stimulate the production of MMPs and their inhibitors via JAK-STAT and ERK-MAPK signalling in human chondrocytes.
        Cell Biol Int. 2012; 36 (Epub 2011/11/18. PubMed PMID: 22087578): 367-376https://doi.org/10.1042/CBI20110150
        • Legendre F.
        • Dudhia J.
        • Pujol J.-P.
        • Bogdanowicz P.
        JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/Soluble IL-6R down-regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes: association with a down-regulation of SOX9 expression.
        J Biol Chem. 2003; 278: 2903-2912https://doi.org/10.1074/jbc.M110773200
        • Zhang M.
        • Mani S.B.
        • He Y.
        • Hall A.M.
        • Xu L.
        • Li Y.
        • et al.
        Induced superficial chondrocyte death reduces catabolic cartilage damage in murine posttraumatic osteoarthritis.
        J Clin Invest. 2016; 126 (Epub 20160718. PubMed PMID: 27427985; PubMed Central PMCID: PMCPMC4966316): 2893-2902https://doi.org/10.1172/jci83676
        • Ren T.
        • Tang Y.J.
        • Wang M.F.
        • Wang H.S.
        • Liu Y.
        • Qian X.
        • et al.
        Triptolide induces apoptosis through the calcium/calmodulin-dependent protein kinase kinasebeta/AMP-activated protein kinase signaling pathway in nonsmall cell lung cancer cells.
        Oncol Rep. 2020; 44 (Epub 2020/10/02. PubMed PMID: 33000264): 2288-2296https://doi.org/10.3892/or.2020.7763
        • Rousset C.I.
        • Leiper F.C.
        • Kichev A.
        • Gressens P.
        • Carling D.
        • Hagberg H.
        • et al.
        A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice.
        J Neurochem. 2015; 133 (Epub 2015/01/20. PubMed PMID: 25598140; PubMed Central PMCID: PMCPMC4855681): 242-252https://doi.org/10.1111/jnc.13034
        • Zhang Y.
        • Xu N.
        • Ding Y.
        • Doycheva D.M.
        • Zhang Y.
        • Li Q.
        • et al.
        Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy.
        Cell Death Dis. 2019; 10 (Epub 2019/02/06. PubMed PMID: 30718467; PubMed Central PMCID: PMCPMC6362229): 97https://doi.org/10.1038/s41419-019-1374-y
        • Zhang Y.
        • Zhang P.
        • Deng C.
        miR-378a-5p regulates CAMKK2/AMPK pathway to contribute to cerebral ischemia/reperfusion injury-induced neuronal apoptosis.
        Folia Histochem Cytobiol. 2021; 59 (Epub 2021/03/03. PubMed PMID: 33651374): 57-65https://doi.org/10.5603/FHC.a2021.0007
        • Min J.W.
        • Bu F.
        • Qi L.
        • Munshi Y.
        • Kim G.S.
        • Marrelli S.P.
        • et al.
        Inhibition of calcium/calmodulin-dependent protein kinase kinase beta is detrimental in hypoxia(-)ischemia neonatal brain injury.
        Int J Mol Sci. 2019; 20 (Epub 2019/04/28. PubMed PMID: 31027360; PubMed Central PMCID: PMCPMC6539688)https://doi.org/10.3390/ijms20092063
        • Gocher A.M.
        • Azabdaftari G.
        • Euscher L.M.
        • Dai S.
        • Karacosta L.G.
        • Franke T.F.
        • et al.
        Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells.
        J Biol Chem. 2017; 292 (Epub 2017/06/22. PubMed PMID: 28634229; PubMed Central PMCID: PMCPMC5572912): 14188-14204https://doi.org/10.1074/jbc.M117.778464
        • Qi D.
        • Atsina K.
        • Qu L.
        • Hu X.
        • Wu X.
        • Xu B.
        • et al.
        The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury.
        J Clin Invest. 2014; 124 (Epub 2014/07/02. PubMed PMID: 24983315; PubMed Central PMCID: PMCPMC4109524): 3540-3550https://doi.org/10.1172/JCI73061
        • Liu-Bryan R.
        Inflammation and intracellular metabolism: new targets in OA.
        Osteoarthritis Cartilage. 2015; 23 (Epub 2015/11/03. PubMed PMID: 26521729; PubMed Central PMCID: PMCPMC4668929): 1835-1842https://doi.org/10.1016/j.joca.2014.12.016
        • Weaver R.E.
        • Sharif M.
        • Livingston L.A.
        • Andrews K.L.
        • Fuller C.J.
        Microscopic change in macroscopically normal equine cartilage from osteoarthritic joints.
        Connect Tissue Res. 2006; 47 (Epub 2006/06/07. PubMed PMID: 16754515): 92-101https://doi.org/10.1080/03008200600584165