Advertisement

The effects of losartan or angiotensin II receptor antagonists on cartilage: a systematic review

Published:December 27, 2022DOI:https://doi.org/10.1016/j.joca.2022.11.014

      Summary

      Objective

      The aim of this study is to analyze the latest evidence on the effects of losartan or Ang II receptor antagonists on cartilage repair, with a focus on their clinical relevance.

      Design

      The PubMed, Embase, and Cochrane Library databases were searched up to November 12th 2021 to evaluate the effects of losartan or Ang II receptor antagonists on cartilage repair in in vitro studies and in vivo animal studies. Study design, sample characteristics, treatment type, duration, and outcomes were analyzed. The risk of bias and the quality of the eligible studies were assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias assessment tool and Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES).

      Results

      A total of 12 studies were included in this systematic review. Of the 12 eligible studies, two studies were in vitro human studies, three studies were in vitro animal studies, one study was an in vitro human and animal study, and six studies were in vivo animal studies. The risk bias and quality assessments were predominantly classified as moderate. Since meta-analysis was difficult due to differences in treatment type, dosage, route of administration, and method of outcome assessment among the eligible studies, qualitative evaluation was conducted for each study.

      Conclusions

      Both in vitro and in vivo studies provide evidence to demonstrate beneficial effects of Ang II receptor antagonists on osteoarthritis and cartilage defect models across animal species.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cheng T.
        • Zhang L.
        • Fu X.
        • Wang W.
        • Xu H.
        • Song H.
        • et al.
        The potential protective effects of calcitonin involved in coordinating chondrocyte response, extracellular matrix, and subchondral trabecular bone in experimental osteoarthritis.
        Connect Tissue Res. 2013; 54: 139-146https://doi.org/10.3109/03008207.2012.760549
        • Lefebvre V.
        • Smits P.
        Transcriptional control of chondrocyte fate and differentiation.
        Birth Defects Res C Embryo Today. 2005; 75: 200-212https://doi.org/10.1002/bdrc.20048
        • van Osch G.J.
        • Brittberg M.
        • Dennis J.E.
        • Bastiaansen-Jenniskens Y.M.
        • Erben R.G.
        • Konttinen Y.T.
        • et al.
        Cartilage repair: past and future – lessons for regenerative medicine.
        J Cell Mol Med. 2009; 13: 792-810https://doi.org/10.1111/j.1582-4934.2009.00789.x
        • Alford J.W.
        • Cole B.J.
        Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options.
        Am J Sports Med. 2005; 33: 295-306https://doi.org/10.1177/0363546504273510
        • Browne J.E.
        • Branch T.P.
        Surgical alternatives for treatment of articular cartilage lesions.
        J Am Acad Orthop Surg. 2000; 8: 180-189https://doi.org/10.5435/00124635-200005000-00005
        • Minas T.
        • Nehrer S.
        Current concepts in the treatment of articular cartilage defects.
        Orthopedics. 1997; 20: 525-538https://doi.org/10.3928/0147-7447-19970601-08
        • Aletaha D.
        • Funovits J.
        • Smolen J.S.
        Physical disability in rheumatoid arthritis is associated with cartilage damage rather than bone destruction.
        Ann Rheum Dis. 2011; 70: 733-739https://doi.org/10.1136/ard.2010.138693
        • Linn M.S.
        • Chase D.C.
        • Healey R.M.
        • Harwood F.L.
        • Bugbee W.D.
        • Amiel D.
        Etanercept enhances preservation of osteochondral allograft viability.
        Am J Sports Med. 2011; 39: 1494-1499https://doi.org/10.1177/0363546511398645
        • Steadman J.R.
        • Rodkey W.G.
        • Briggs K.K.
        Microfracture: its history and experience of the developing surgeon.
        Cartilage. 2010; 1: 78-86https://doi.org/10.1177/1947603510365533
        • Erggelet C.
        • Steinwachs M.R.
        • Reichelt A.
        The operative treatment of full thickness cartilage defects in the knee joint with autologous chondrocyte transplantation.
        Saudi Med J. 2000; 21: 715-721
        • Solheim E.
        • Hegna J.
        • Inderhaug E.
        Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: a comparative study between two treatments cohorts.
        Cartilage. 2020; 11: 71-76https://doi.org/10.1177/1947603518783482
        • Chahal J.
        • Gross A.E.
        • Gross C.
        • Mall N.
        • Dwyer T.
        • Chahal A.
        • et al.
        Outcomes of osteochondral allograft transplantation in the knee.
        Arthroscopy. 2013; 29: 575-588https://doi.org/10.1016/j.arthro.2012.12.002
        • Widuchowski W.
        • Widuchowski J.
        • Trzaska T.
        Articular cartilage defects: study of 25,124 knee arthroscopies.
        Knee. 2007; 14: 177-182https://doi.org/10.1016/j.knee.2007.02.001
        • Nelson A.E.
        Osteoarthritis year in review 2017: clinical.
        Osteoarthr Cartil. 2018; 26: 319-325https://doi.org/10.1016/j.joca.2017.11.014
        • Wu M.
        • Peng Z.
        • Zu C.
        • Ma J.
        • Lu S.
        • Zhong J.
        • et al.
        Losartan attenuates myocardial endothelial-to-mesenchymal transition in spontaneous hypertensive rats via inhibiting TGF-β/Smad signaling.
        PLoS One. 2016; 11e0155730https://doi.org/10.1371/journal.pone.0155730
        • Zou J.
        • Zhou X.
        • Ma Y.
        • Yu R.
        Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad.
        Biomed Pharmacother. 2022; 149112931https://doi.org/10.1016/j.biopha.2022.112931
        • Utsunomiya H.
        • Gao X.
        • Deng Z.
        • Cheng H.
        • Nakama G.
        • Scibetta A.C.
        • et al.
        Biologically regulated marrow stimulation by blocking TGF-β1 with losartan oral administration results in hyaline-like cartilage repair: a rabbit osteochondral defect model.
        Am J Sports Med. 2020; 48: 974-984https://doi.org/10.1177/0363546519898681
        • Martin C.J.
        • Datta A.
        • Littlefield C.
        • Kalra A.
        • Chapron C.
        • Wawersik S.
        • et al.
        Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape.
        Sci Transl Med. 2020; 12https://doi.org/10.1126/scitranslmed.aay8456
        • Bedinger D.
        • Lao L.
        • Khan S.
        • Lee S.
        • Takeuchi T.
        • Mirza A.M.
        Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms.
        MAbs. 2016; 8: 389-404https://doi.org/10.1080/19420862.2015.1115166
        • Bouquet F.
        • Pal A.
        • Pilones K.A.
        • Demaria S.
        • Hann B.
        • Akhurst R.J.
        • et al.
        TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo.
        Clin Cancer Res. 2011; 17: 6754-6765https://doi.org/10.1158/1078-0432.CCR-11-0544
        • Teicher B.A.
        Tgfβ-directed therapeutics: 2020.
        Pharmacol Ther. 2021; 217107666https://doi.org/10.1016/j.pharmthera.2020.107666
        • Blaney Davidson E.N.
        • van der Kraan P.M.
        • van den Berg W.B.
        TGF-beta and osteoarthritis.
        Osteoarthr Cartil. 2007; 15: 597-604https://doi.org/10.1016/j.joca.2007.02.005
        • Shen J.
        • Li J.
        • Wang B.
        • Jin H.
        • Wang M.
        • Zhang Y.
        • et al.
        Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice.
        Arthritis Rheumatol. 2013; 65: 3107-3119https://doi.org/10.1002/art.38122
        • van de Laar I.M.
        • Oldenburg R.A.
        • Pals G.
        • Roos-Hesselink J.W.
        • de Graaf B.M.
        • Verhagen J.M.
        • et al.
        Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis.
        Nat Genet. 2011; 43: 121-126https://doi.org/10.1038/ng.744
        • Bakker A.C.
        • van de Loo F.A.
        • van Beuningen H.M.
        • Sime P.
        • van Lent P.L.
        • van der Kraan P.M.
        • et al.
        Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation.
        Osteoarthr Cartil. 2001; 9: 128-136https://doi.org/10.1053/joca.2000.0368
        • Itayem R.
        • Mengarelli-Widholm S.
        • Reinholt F.P.
        The long-term effect of a short course of transforming growth factor-beta1 on rat articular cartilage.
        Apmis. 1999; 107: 183-192https://doi.org/10.1111/j.1699-0463.1999.tb01543.x
        • Serra R.
        • Johnson M.
        • Filvaroff E.H.
        • LaBorde J.
        • Sheehan D.M.
        • Derynck R.
        • et al.
        Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis.
        J Cell Biol. 1997; 139: 541-552https://doi.org/10.1083/jcb.139.2.541
        • Peach M.J.
        Renin-angiotensin system: biochemistry and mechanisms of action.
        Physiol Rev. 1977; 57: 313-370https://doi.org/10.1152/physrev.1977.57.2.313
        • Zhao Y.
        • Wang H.
        • Li X.
        • Cao M.
        • Lu H.
        • Meng Q.
        • et al.
        Ang II-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer.
        J Cell Physiol. 2014; 229: 1855-1862https://doi.org/10.1002/jcp.24639
        • Tsukamoto I.
        • Akagi M.
        • Inoue S.
        • Yamagishi K.
        • Mori S.
        • Asada S.
        Expressions of local renin-angiotensin system components in chondrocytes.
        Eur J Histochem. 2014; 58: 2387https://doi.org/10.4081/ejh.2014.2387
        • Bowen T.
        • Jenkins R.H.
        • Fraser D.J.
        MicroRNAs, transforming growth factor beta-1, and tissue fibrosis.
        J Pathol. 2013; 229: 274-285https://doi.org/10.1002/path.4119
        • Kawakami Y.
        • Matsuo K.
        • Murata M.
        • Yudoh K.
        • Nakamura H.
        • Shimizu H.
        • et al.
        Expression of angiotensin II receptor-1 in human articular chondrocytes.
        Arthritis. 2012; 2012648537https://doi.org/10.1155/2012/648537
        • Tsukamoto I.
        • Inoue S.
        • Teramura T.
        • Takehara T.
        • Ohtani K.
        • Akagi M.
        Activating types 1 and 2 angiotensin II receptors modulate the hypertrophic differentiation of chondrocytes.
        FEBS Open Bio. 2013; 3: 279-284https://doi.org/10.1016/j.fob.2013.07.001
        • Wang Y.
        • Kou J.
        • Zhang H.
        • Wang C.
        • Li H.
        • Ren Y.
        • et al.
        The renin-angiotensin system in the synovium promotes periarticular osteopenia in a rat model of collagen-induced arthritis.
        Int Immunopharmacol. 2018; 65: 550-558https://doi.org/10.1177/1747493018778713
        • Wu Y.
        • Lu X.
        • Li M.
        • Zeng J.
        • Zeng J.
        • Shen B.
        • et al.
        Renin-angiotensin system in osteoarthritis: a new potential therapy.
        Int Immunopharmacol. 2019; 75105796https://doi.org/10.1016/j.intimp.2019.105796
        • Thomas M.
        • Fronk Z.
        • Gross A.
        • Willmore D.
        • Arango A.
        • Higham C.
        • et al.
        Losartan attenuates progression of osteoarthritis in the synovial temporomandibular and knee joints of a chondrodysplasia mouse model through inhibition of TGF-β1 signaling pathway.
        Osteoarthr Cartil. 2019; 27: 676-686https://doi.org/10.1016/j.joca.2018.12.016
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gøtzsche P.C.
        • Ioannidis J.P.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration.
        Bmj. 2009; 339: b2700https://doi.org/10.1136/bmj.b2700
        • Schneider K.
        • Schwarz M.
        • Burkholder I.
        • Kopp-Schneider A.
        • Edler L.
        • Kinsner-Ovaskainen A.
        • et al.
        “ToxRTool”, a new tool to assess the reliability of toxicological data.
        Toxicol Lett. 2009; 189: 138-144https://doi.org/10.1016/j.toxlet.2009.05.013
        • Council NHaMR
        Assessing Risk of Bias.
        2019
        • Hooijmans C.R.
        • Rovers M.M.
        • de Vries R.B.
        • Leenaars M.
        • Ritskes-Hoitinga M.
        • Langendam M.W.
        SYRCLE's risk of bias tool for animal studies.
        BMC Med Res Methodol. 2014; 14: 43https://doi.org/10.1186/1471-2288-14-43
        • Lundh A.
        • Gøtzsche P.C.
        Recommendations by cochrane review groups for assessment of the risk of bias in studies.
        BMC Med Res Methodol. 2008; 8: 22https://doi.org/10.1186/1471-2288-8-22
        • Macleod M.R.
        • O'Collins T.
        • Howells D.W.
        • Donnan G.A.
        Pooling of animal experimental data reveals influence of study design and publication bias.
        Stroke. 2004; 35: 1203-1208https://doi.org/10.1161/01.STR.0000125719.25853.20
        • Lei J.
        • He M.
        • Xu L.
        • He C.
        • Li J.
        • Wang W.
        Azilsartan prevented AGE-induced inflammatory response and degradation of aggrecan in human chondrocytes through inhibition of Sox4.
        J Biochem Mol Toxicol. 2021; 35e22827https://doi.org/10.1002/jbt.22827
        • Zhang X.
        • Dong Y.
        • Dong H.
        • Cui Y.
        • Du Q.
        • Wang X.
        • et al.
        Telmisartan mitigates TNF-α-induced type II collagen reduction by upregulating SOX-9.
        ACS Omega. 2021; 6: 11756-11761https://doi.org/10.1021/acsomega.1c01170
        • Nakamura F.
        • Tsukamoto I.
        • Inoue S.
        • Hashimoto K.
        • Akagi M.
        Cyclic compressive loading activates angiotensin II type 1 receptor in articular chondrocytes and stimulates hypertrophic differentiation through a G-protein-dependent pathway.
        FEBS Open Bio. 2018; 8: 962-973https://doi.org/10.1002/2211-5463.12438
        • Cai H.Q.
        • Miao M.Y.
        • Zhang W.L.
        AT1/2R affects the proliferation and apoptosis of chondrocytes induced by oxygen-glucose deprivation.
        Bratisl Lek Listy. 2020; 121: 584-588https://doi.org/10.4149/BLL_2020_097
        • Nishida T.
        • Akashi S.
        • Takigawa M.
        • Kubota S.
        Effect of angiotensin II on chondrocyte degeneration and protection via differential usage of angiotensin II receptors.
        Int J Mol Sci. 2021; 22https://doi.org/10.3390/ijms22179204
        • Chen R.
        • Mian M.
        • Fu M.
        • Zhao J.Y.
        • Yang L.
        • Li Y.
        • et al.
        Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis.
        Am J Pathol. 2015; 185: 2875-2885https://doi.org/10.1016/j.ajpath.2015.07.003
        • Kawahata H.
        • Sotobayashi D.
        • Aoki M.
        • Shimizu H.
        • Nakagami H.
        • Ogihara T.
        • et al.
        Continuous infusion of angiotensin II modulates hypertrophic differentiation and apoptosis of chondrocytes in cartilage formation in a fracture model mouse.
        Hypertens Res. 2015; 38: 382-393https://doi.org/10.1038/hr.2015.18
        • Logan C.A.
        • Gao X.
        • Utsunomiya H.
        • Scibetta A.C.
        • Talwar M.
        • Ravuri S.K.
        • et al.
        The beneficial effect of an intra-articular injection of losartan on microfracture-mediated cartilage repair is dose dependent.
        Am J Sports Med. 2021; 49: 2509-2521https://doi.org/10.1177/03635465211008655
        • Deng Z.
        • Chen F.
        • Liu Y.
        • Wang J.
        • Lu W.
        • Jiang W.
        • et al.
        Losartan protects against osteoarthritis by repressing the TGF-β1 signaling pathway via upregulation of PPARγ.
        J Orthop Translat. 2021; 29: 30-41https://doi.org/10.1016/j.jot.2021.03.005
        • Scudeller L.
        • Righi E.
        • Chiamenti M.
        • Bragantini D.
        • Menchinelli G.
        • Cattaneo P.
        • et al.
        Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli.
        Int J Antimicrob Agents. 2021; 57106344https://doi.org/10.1016/j.ijantimicag.2021.106344
        • Kilkenny C.
        • Parsons N.
        • Kadyszewski E.
        • Festing M.F.
        • Cuthill I.C.
        • Fry D.
        • et al.
        Survey of the quality of experimental design, statistical analysis and reporting of research using animals.
        PLoS One. 2009; 4e7824https://doi.org/10.1371/journal.pone.0007824
        • Verzijl N.
        • DeGroot J.
        • Ben Z.C.
        • Brau-Benjamin O.
        • Maroudas A.
        • Bank R.A.
        • et al.
        Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis.
        Arthritis Rheumatol. 2002; 46: 114-123https://doi.org/10.1002/1529-0131(200201)46:1<114::AID-ART10025>3.0.CO;2-P
        • Catrina A.I.
        • Lampa J.
        • Ernestam S.
        • af Klint E.
        • Bratt J.
        • Klareskog L.
        • et al.
        Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis.
        Rheumatology. 2002; 41: 484-489https://doi.org/10.1093/rheumatology/41.5.484
        • Wehling N.
        • Palmer G.D.
        • Pilapil C.
        • Liu F.
        • Wells J.W.
        • Müller P.E.
        • et al.
        Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways.
        Arthritis Rheumatol. 2009; 60: 801-812https://doi.org/10.1002/art.24352
        • Glasson S.S.
        • Chambers M.G.
        • Van Den Berg W.B.
        • Little C.B.
        The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse.
        Osteoarthr Cartil. 2010; 18: S17-S23https://doi.org/10.1016/j.joca.2010.05.025
        • Bomsta B.D.
        • Bridgewater L.C.
        • Seegmiller R.E.
        Premature osteoarthritis in the Disproportionate micromelia (Dmm) mouse.
        Osteoarthr Cartil. 2006; 14: 477-485https://doi.org/10.1016/j.joca.2005.11.011
        • Ricks M.L.
        • Farrell J.T.
        • Falk D.J.
        • Holt D.W.
        • Rees M.
        • Carr J.
        • et al.
        Osteoarthritis in temporomandibular joint of Col2a1 mutant mice.
        Arch Oral Biol. 2013; 58: 1092-1099https://doi.org/10.1016/j.archoralbio.2013.02.008
        • O'Driscoll S.W.
        • Keeley F.W.
        • Salter R.B.
        The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit.
        J Bone Jt Surg Am. 1986; 68: 1017-1035
        • Lian C.
        • Wang X.
        • Qiu X.
        • Wu Z.
        • Gao B.
        • Liu L.
        • et al.
        Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction.
        Bone Res. 2019; 7: 8https://doi.org/10.1038/s41413-019-0046-y
        • Rim Y.A.
        • Nam Y.
        • Ju J.H.
        The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21072358
        • Sica D.A.
        • Gehr T.W.
        • Ghosh S.
        Clinical pharmacokinetics of losartan.
        Clin Pharmacokinet. 2005; 44: 797-814https://doi.org/10.2165/00003088-200544080-00003
        • Gerwin N.
        • Hops C.
        • Lucke A.
        Intraarticular drug delivery in osteoarthritis.
        Adv Drug Deliv Rev. 2006; 58: 226-242https://doi.org/10.1016/j.addr.2006.01.018
        • Owen S.G.
        • Francis H.W.
        • Roberts M.S.
        Disappearance kinetics of solutes from synovial fluid after intra-articular injection.
        Br J Clin Pharmacol. 1994; 38: 349-355https://doi.org/10.1111/j.1365-2125.1994.tb04365.x
        • Lescun T.B.
        • Adams S.B.
        • Wu C.C.
        • Bill R.P.
        Continuous infusion of gentamicin into the tarsocrural joint of horses.
        Am J Vet Res. 2000; 61: 407-412https://doi.org/10.2460/ajvr.2000.61.407
        • Galéra P.
        • Vivien D.
        • Pronost S.
        • Bonaventure J.
        • Rédini F.
        • Loyau G.
        • et al.
        Transforming growth factor-beta 1 (TGF-beta 1) up-regulation of collagen type II in primary cultures of rabbit articular chondrocytes (RAC) involves increased mRNA levels without affecting mRNA stability and procollagen processing.
        J Cell Physiol. 1992; 153: 596-606https://doi.org/10.1002/jcp.1041530322
        • van Beuningen H.M.
        • van der Kraan P.M.
        • Arntz O.J.
        • van den Berg W.B.
        Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint.
        Lab Investig. 1994; 71: 279-290
        • Blaney Davidson E.N.
        • Vitters E.L.
        • van der Kraan P.M.
        • van den Berg W.B.
        Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation.
        Ann Rheum Dis. 2006; 65: 1414-1421https://doi.org/10.1136/ard.2005.045971
        • Zhen G.
        • Wen C.
        • Jia X.
        • Li Y.
        • Crane J.L.
        • Mears S.C.
        • et al.
        Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis.
        Nat Med. 2013; 19: 704-712https://doi.org/10.1038/nm.3143
        • Ismail H.M.
        • Didangelos A.
        • Vincent T.L.
        • Saklatvala J.
        Rapid activation of transforming growth factor β-activated kinase 1 in chondrocytes by phosphorylation and K(63)-linked polyubiquitination upon injury to animal articular cartilage.
        Arthritis Rheumatol. 2017; 69: 565-575https://doi.org/10.1002/art.39965