Advertisement

Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis

  • X. Wu
    Affiliations
    Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia

    Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
    Search for articles by this author
  • C. Liyanage
    Affiliations
    Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia

    Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
    Search for articles by this author
  • M. Plan
    Affiliations
    Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia

    Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia
    Search for articles by this author
  • T. Stark
    Affiliations
    Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia

    Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia
    Search for articles by this author
  • T. McCubbin
    Affiliations
    Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia

    Metabolomics Australia (Queensland Node), AIBN, The University of Queensland, Brisbane, QLD 4072, Australia
    Search for articles by this author
  • R.A. Barrero
    Affiliations
    eResearch Office, Queensland University of Technology, Brisbane, QLD 4000, Australia
    Search for articles by this author
  • J. Batra
    Affiliations
    Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia

    Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
    Search for articles by this author
  • R. Crawford
    Affiliations
    The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
    Search for articles by this author
  • Y. Xiao
    Affiliations
    Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia

    Australia–China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia
    Search for articles by this author
  • I. Prasadam
    Correspondence
    Address correspondence and reprint requests to: I. Prasadam, Stem cell and Tissue Engineering Program, Biomimetic Technologies for Cartilage repair and Arthritis (BT-CRA), SEF Faculty Research Ethics, and Integrity Advisor, Centre for Biomedical Technologies |School of Mechanical, Medical and Process Engineering |Queensland University of Technology, 60 Musk Ave/cnr. Blamey St, Kelvin Grove, QLD 4059, Australia. Tel: 61-7-3138-6137, 61-0469-117-898 (mobile); Fax: 61-7-3138-6030.
    [email protected] http://www.qut.edu.au/ihbi Twitter [email protected]
    Affiliations
    Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
    Search for articles by this author
Published:November 18, 2022DOI:https://doi.org/10.1016/j.joca.2022.11.004

      Summary

      Objectives

      Metabolic pathways are a series of chemical reactions by which cells take in nutrient substrates for energy and building blocks needed to maintain critical cellular processes. Details of chondrocyte metabolism and how it rewires during the progression of osteoarthritis (OA) are unknown. This research aims to identify what changes in the energy metabolic state occur in OA cartilage.

      Methods

      Patient matched OA and non-OA cartilage specimens were harvested from total knee replacement patients. Cartilage was first collected for metabolomics, proteomics, and transcriptomics analyses to study global alterations in OA metabolism. We then determined the metabolic routes by tracking [U-13C] isotope with liquid chromatography-mass spectrometry (LC-MS). We further evaluated cellular bioenergetic profiles by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) and investigated the effects of low-dose and short-term effects of 2-deoxyglucose (2DG) on chondrocytes.

      Results

      OA chondrocytes showed increased basal ECAR and more lactate production compared to non-OA chondrocytes. [U-13C] glucose labelling revealed that less glucose-derived carbon entered the tricarboxylic acid (TCA) cycle. On the other hand, mitochondrial respiratory rates were markedly decreased in the OA chondrocytes compared to non-OA chondrocytes. These changes were accompanied by decreased cellular ATP production, mitochondrial membrane potential and disrupted mitochondrial morphology. We further demonstrated in vitro that short-term inhibition of glycolysis suppressed matrix degeneration gene expression in chondrocytes and bovine cartilage explants cultured under inflammatory conditions.

      Conclusion

      This study represents the first comprehensive comparative analysis of metabolism in OA chondrocytes and lays the groundwork for therapeutic targeting of metabolism in OA.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zheng L.
        • Zhang Z.
        • Sheng P.
        • Mobasheri A.
        The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis.
        Ageing Res Rev. 2021; 66101249
        • Huss J.M.
        • Kelly D.P.
        Mitochondrial energy metabolism in heart failure: a question of balance.
        J Clin Investig. 2005; 115: 547-555
        • Nakazawa M.S.
        • Keith B.
        • Simon M.C.
        Oxygen availability and metabolic adaptations.
        Nat Rev Cancer. 2016; 16: 663-673
        • Jian S.
        • Chen W.
        • Su Y.
        • Su Y.
        • Chuang T.
        • Hsu S.
        • et al.
        Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis.
        Cell Death Dis. 2017; 8: e2779
        • Hollander J.M.
        • Zeng L.
        The emerging role of glucose metabolism in cartilage development.
        Curr Osteoporos Rep. 2019; 17: 59-69
        • Soto-Heredero G.
        • Gómez de Las Heras M.M.
        • Gabandé-Rodríguez E.
        • Oller J.
        • Mittelbrunn M.
        Glycolysis - a key player in the inflammatory response.
        FEBS J. 2020; 287: 3350-3369
        • Bertero E.
        • Maack C.
        Metabolic remodelling in heart failure.
        Nat Rev Cardiol. 2018; 15: 457-470
        • Srivastava S.P.
        • Li J.
        • Kitada M.
        • Fujita H.
        • Yamada Y.
        • Goodwin J.E.
        • et al.
        SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis.
        Cell Death Dis. 2018; 9: 1-14
        • Arra M.
        • Swarnkar G.
        • Ke K.
        • Otero J.E.
        • Ying J.
        • Maruyama T.
        • et al.
        LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis.
        Nat Commun. 2020; 11: 1-16
        • Rosa S.C.
        • Gonçalves J.
        • Judas F.
        • Mobasheri A.
        • Lopes C.
        • Mendes A.F.
        Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage.
        Arthritis Res Ther. 2009; 11: R80
        • Yang X.
        • Chen W.
        • Zhao X.
        • Chen L.
        • Li W.
        • Ran J.
        • et al.
        Pyruvate kinase M2 modulates the glycolysis of chondrocyte and extracellular matrix in osteoarthritis.
        DNA Cell Biol. 2018; 37: 271-277
        • Yui N.
        • Yoshioka H.
        • Fujiya H.
        • Musha H.
        • Karasawa R.
        • Yudoh K.
        Water-soluble C60-(OH) 24 fullerene hydroxide as a therapeutic agent against the degeneration of articular cartilage in osteoarthritis.
        Osteoarthritis Cartilage. 2015; 23: A164-A165
        • Prasadam I.
        • Crawford R.
        • Xiao Y.
        Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes -- possible pathogenic role in osteoarthritis.
        J Rheumatol. 2012; 39: 621-634
        • Prasadam I.
        • Mao X.
        • Wang Y.
        • Shi W.
        • Crawford R.
        • Xiao Y.
        Inhibition of p38 pathway leads to OA-like changes in a rat animal model.
        Rheumatology. 2012; 51: 813-823
        • Wu X.
        • Crawford R.
        • Xiao Y.
        • Mao X.
        • Prasadam I.
        Osteoarthritic subchondral bone release exosomes that promote cartilage degeneration.
        Cells. 2021; 10: 251
        • Farnaghi S.
        • Prasadam I.
        • Cai G.
        • Friis T.
        • Du Z.
        • Crawford R.
        • et al.
        Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis.
        FASB J. 2017; 31: 356-367
        • Fame R.M.
        • Shannon M.L.
        • Chau K.F.
        • Head J.P.
        • Lehtinen M.K.
        A concerted metabolic shift in early forebrain alters the CSF proteome and depends on MYC downregulation for mitochondrial maturation.
        Development. 2019; : 146
        • Houard X.
        • Goldring M.B.
        • Berenbaum F.
        Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis.
        Curr Rheumatol Rep. 2013; 15: 375
        • Salinas D.
        • Minor C.A.
        • Carlson R.P.
        • McCutchen C.N.
        • Mumey B.M.
        • June R.K.
        Combining targeted metabolomic data with a model of glucose metabolism: toward progress in chondrocyte mechanotransduction.
        PLoS One. 2017; 12e0168326
        • Richardson S.M.
        • Kalamegam G.
        • Pushparaj P.N.
        • Matta C.
        • Memic A.
        • Khademhosseini A.
        • et al.
        Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration.
        Methods. 2016; 99: 69-80
        • High R.A.
        • Ji Y.
        • Ma Y.J.
        • Tang Q.
        • Murphy M.E.
        • Du J.
        • et al.
        In vivo assessment of extracellular pH of joint tissues using acidoCEST-UTE MRI.
        Quant Imaging Med Surg. 2019; 9: 1664-1673
        • Schipani E.
        • Ryan H.E.
        • Didrickson S.
        • Kobayashi T.
        • Knight M.
        • Johnson R.S.
        Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.
        Genes Dev. 2001; 15: 2865-2876
        • Tchetina E.
        • Mwale F.
        • Poole A.R.
        Distinct phases of coordinated early and late gene expression in growth plate chondrocytes in relationship to cell proliferation, matrix assembly, remodeling, and cell differentiation.
        J Bone Miner Res. 2003; 18: 844-851
        • Bustamante M.F.
        • Oliveira P.G.
        • Garcia-Carbonell R.
        • Croft A.P.
        • Smith J.M.
        • Serrano R.L.
        • et al.
        Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis.
        Ann Rheum Dis. 2018; 77: 1636-1643
        • Liu-Bryan R.
        • Terkeltaub R.
        Emerging regulators of the inflammatory process in osteoarthritis.
        Nat Rev Rheumatol. 2015; 11: 35-44
        • Qu J.
        • Lu D.
        • Guo H.
        • Miao W.
        • Wu G.
        • Zhou M.
        PFKFB3 modulates glycolytic metabolism and alleviates endoplasmic reticulum stress in human osteoarthritis cartilage.
        Clin Exp Pharmacol Physiol. 2016; 43: 312-318
        • Farah H.
        • Young S.P.
        • Mauro C.
        • Jones S.W.
        Metabolic dysfunction and inflammatory disease: the role of stromal fibroblasts.
        FEBS J. 2021; 288: 5555-5568
        • Carlson A.K.
        • Rawle R.A.
        • Wallace C.W.
        • Brooks E.G.
        • Adams E.
        • Greenwood M.C.
        • et al.
        Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis.
        Osteoarthritis Cartilage. 2019; 27: 1174-1184
        • Milner P.I.
        • Fairfax T.P.
        • Browning J.A.
        • Wilkins R.J.
        • Gibson J.S.
        The effect of O2 tension on pH homeostasis in equine articular chondrocytes.
        Arthritis Rheum. 2006; 54: 3523-3532
        • van der Bliek A.M.
        • Sedensky M.M.
        • Morgan P.G.
        Cell biology of the mitochondrion.
        Genetics. 2017; 207: 843-871
        • Kühlbrandt W.
        Structure and function of mitochondrial membrane protein complexes.
        BMC Biol. 2015; 13: 89
        • Cillero-Pastor B.
        • Rego-Pérez I.
        • Oreiro N.
        • Fernandez-Lopez C.
        • Blanco F.J.
        Mitochondrial respiratory chain dysfunction modulates metalloproteases -1, -3 and -13 in human normal chondrocytes in culture.
        BMC Musculoskelet Disord. 2013; 14: 235
        • Maneiro E.
        • Martín M.A.
        • de Andres M.C.
        • López-Armada M.J.
        • Fernández-Sueiro J.L.
        • del Hoyo P.
        • et al.
        Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes.
        Arthritis Rheum. 2003; 48: 700-708
        • Liu H.
        • Li Z.
        • Cao Y.
        • Cui Y.
        • Yang X.
        • Meng Z.
        • et al.
        Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: a possible pathway for osteoarthritis pathology at the subcellular level.
        Mol Med Rep. 2019; 20: 3308-3316
        • Zorov D.B.
        • Juhaszova M.
        • Sollott S.J.
        Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.
        Physiol Rev. 2014; 94: 909-950
        • Yudoh K.
        • Nguyen v T.
        • Nakamura H.
        • Hongo-Masuko K.
        • Kato T.
        • Nishioka K.
        Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function.
        Arthritis Res Ther. 2005; 7: R380-R391
        • Herb M.
        • Gluschko A.
        • Schramm M.
        Reactive oxygen species: not omnipresent but important in many locations.
        Front Cell Dev Biol. 2021; 9716406
        • Altay M.A.
        • Ertürk C.
        • Bilge A.
        • Yaptı M.
        • Levent A.
        • Aksoy N.
        Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters.
        Rheumatol Int. 2015; 35: 1725-1731
        • Carlo Jr., M.D.
        • Loeser R.F.
        Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels.
        Arthritis Rheum. 2003; 48: 3419-3430
        • Martin J.A.
        • Martini A.
        • Molinari A.
        • Morgan W.
        • Ramalingam W.
        • Buckwalter J.A.
        • et al.
        Mitochondrial electron transport and glycolysis are coupled in articular cartilage.
        Osteoarthritis Cartilage. 2012; 20: 323-329
        • Mao X.
        • Fu P.
        • Wang L.
        • Xiang C.
        Mitochondria: potential targets for osteoarthritis.
        Front Med. 2020; 7581402
        • Loeser R.F.
        • Collins J.A.
        • Diekman B.O.
        Ageing and the pathogenesis of osteoarthritis.
        Nat Rev Rheumatol. 2016; 12: 412-420
        • Grishko V.I.
        • Ho R.
        • Wilson G.L.
        • Pearsall AWt
        Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes.
        Osteoarthritis Cartilage. 2009; 17: 107-113
        • Chen X.
        • Song S.
        • Li H.
        • Gözaydın G.
        • Yan N.
        Expanding the boundary of biorefinery: organonitrogen chemicals from biomass.
        Acc Chem Res. 2021; 54: 1711-1722
        • Swan C.L.
        • Sistonen L.
        Cellular stress response cross talk maintains protein and energy homeostasis.
        EMBO J. 2015; 34: 267-269
        • Zhu J.
        • Thompson C.B.
        Metabolic regulation of cell growth and proliferation.
        Nat Rev Mol Cell Biol. 2019; 20: 436-450