Advertisement

Is running good or bad for your knees? A systematic review and meta-analysis of cartilage morphology and composition changes in the tibiofemoral and patellofemoral joints

Published:November 16, 2022DOI:https://doi.org/10.1016/j.joca.2022.09.013

      Summary

      Background

      The general health benefits of running are well-established, yet concern exists regarding the development and progression of osteoarthritis.

      Aim

      To systematically review the immediate (within 20 minutes) and delayed (20 minutes to 48 hours) effect of running on hip and knee cartilage, as assessed using magnetic resonance imaging (MRI).

      Method

      Studies using MRI to measure change in hip or knee cartilage within 48 hours pre- and post-running were identified. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Percentage change in cartilage outcomes were estimated using random-effects meta-analysis. Certainty of evidence was evaluated with the Grading of Recommendations Assessment, Development and Evaluation tool.

      Results

      Twenty-four studies were included, evaluating 446 knees only. One third of studies were low risk of bias. Knee cartilage thickness and volume decreased immediately after running, with declines ranging from 3.3% (95% confidence interval [CI]: 2.6%, 4.1%) for weight-bearing femoral cartilage volume to 4.9% (95% CI: 4.43.6%, 6.2%) for patellar cartilage volume. T1ρ and T2 relaxation times were also reduced immediately after running, with the largest decline being 13.1% (95% CI: -14.4%, -11.7%) in femoral trochlear cartilage. Tibiofemoral cartilage T2 relaxation times recovered to baseline levels within 91 minutes. Existing cartilage defects were unchanged within 48 hours post-run.

      Conclusions

      There is very low certainty evidence that running immediately decreases the thickness, volume, and relaxation times of patellofemoral and tibiofemoral cartilage. Hip cartilage changes are unknown, but knee changes are small and appear transient suggesting that a single bout of running is not detrimental to knee cartilage.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pedisic Z.
        • Shrestha N.
        • Kovalchik S.
        • Stamatakis E.
        • Liangruenrom N.
        • Grgic J.
        • et al.
        Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis.
        British Journal of Sports Medicine. 2020; 54: 898https://doi.org/10.1136/bjsports-2018-100493
        • Oswald F.
        • Campbell J.
        • Williamson C.
        • Richards J.
        • Kelly P.
        A Scoping Review of the Relationship between Running and Mental Health.
        International journal of environmental research and public health. 2020; 17: 8059
        • Kakouris N.
        • Yener N.
        • Fong D.T.
        A systematic review of running-related musculoskeletal injuries in runners.
        Journal of Sport and Health Science. 2021;
        • Esculier J.-F.
        • Krowchuk N.M.
        • Li L.C.
        • Taunton J.E.
        • Hunt M.A.
        What are the perceptions about running and knee joint health among the public and healthcare practitioners in Canada?.
        PLOS ONE. 2018; 13e0204872https://doi.org/10.1371/journal.pone.0204872
        • Alentorn-Geli E.
        • Samuelsson K.
        • Musahl V.
        • Green C.L.
        • Bhandari M.
        • Karlsson J.
        The association of recreational and competitive running with hip and knee osteoarthritis: a systematic review and meta-analysis.
        journal of orthopaedic & sports physical therapy. 2017; 47: 373-390
        • Timmins K.A.
        • Leech R.D.
        • Batt M.E.
        • Edwards K.L.
        Running and knee osteoarthritis: a systematic review and meta-analysis.
        The American journal of sports medicine. 2017; 45: 1447-1457
        • Lo G.H.
        • Driban J.B.
        • Kriska A.M.
        • McAlindon T.E.
        • Souza R.B.
        • Petersen N.J.
        • et al.
        History of running is not associated with higher risk of symptomatic knee osteoarthritis: a cross-sectional study from the osteoarthritis initiative.
        Arthritis care & research. 2017; 69: 183
        • Driban J.B.
        • Hootman J.M.
        • Sitler M.R.
        • Harris K.P.
        • Cattano N.M.
        Is participation in certain sports associated with knee osteoarthritis? A systematic review.
        Journal of athletic training. 2017; 52: 497-506
        • Hunter D.J.
        • Zhang W.
        • Conaghan P.G.
        • Hirko K.
        • Menashe L.
        • Reichmann W.M.
        • et al.
        Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence.
        Osteoarthritis and Cartilage. 2011; 19: 589-605https://doi.org/10.1016/j.joca.2010.10.030
        • Jones G.
        • Ding C.
        • Scott F.
        • Glisson M.
        • Cicuttini F.
        Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females.
        Osteoarthritis and Cartilage. 2004; 12: 169-174
        • Van Ginckel A.
        • Baelde N.
        • Almqvist K.
        • Roosen P.
        • McNair P.
        • Witvrouw E.
        Functional adaptation of knee cartilage in asymptomatic female novice runners compared to sedentary controls. A longitudinal analysis using delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC).
        Osteoarthritis and cartilage. 2010; 18: 1564-1569
        • Horga L.M.
        • Henckel J.
        • Fotiadou A.
        • Hirschmann A.
        • Torlasco C.
        • Di Laura A.
        • et al.
        Can marathon running improve knee damage of middle-aged adults? A prospective cohort study.
        BMJ open sport & exercise medicine. 2019; 5e000586
        • Hinterwimmer S.
        • Feucht M.J.
        • Steinbrech C.
        • Graichen H.
        • von Eisenhart-Rothe R.
        The effect of a six-month training program followed by a marathon run on knee joint cartilage volume and thickness in marathon beginners.
        Knee Surgery, Sports Traumatology, Arthroscopy. 2014; 22: 1353-1359
        • Lu L.
        • Wang Y.
        Effects of exercises on knee cartilage volume in young healthy adults: a randomized controlled trial.
        Chinese medical journal. 2014; 127: 2316-2321
        • Dong X.
        • Li C.
        • Liu J.
        • Huang P.
        • Jiang G.
        • Zhang M.
        • et al.
        The effect of running on knee joint cartilage: a systematic review and meta-analysis.
        Physical Therapy in Sport. 2020;
        • Hoessly M.L.
        • Wildi L.M.
        Magnetic resonance imaging findings in the knee before and after long-distance running—documentation of irreversible structural damage? A systematic review.
        The American journal of sports medicine. 2017; 45: 1206-1217
        • Khan M.
        • O’Donovan J.
        • Charlton J.M.
        • Roy J.-S.
        • Hunt M.A.
        • Esculier J.-F.
        The Influence of Running on Lower Limb Cartilage: A Systematic Review and Meta-analysis.
        Sports Medicine. 2021; : 1-20
        • Shu D.
        • Chen F.
        • Guo W.
        • Ding J.
        • Dai S.
        Acute changes in knee cartilage and meniscus following long-distance running in habituate runners: a systematic review on studies using quantitative magnetic resonance imaging.
        Skeletal Radiology. 2021; : 1-13
        • Hinman R.S.
        • Crossley K.M.
        Patellofemoral joint osteoarthritis: an important subgroup of knee osteoarthritis.
        Rheumatology. 2007; 46: 1057-1062https://doi.org/10.1093/rheumatology/kem114
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • Group P.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS med. 2009; 6e1000097
      1. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions: John Wiley & Sons; 2021. version 6.2:[Available from: www.training.cochrane.org/handbook.

        • Peterfy C.
        • Guermazi A.
        • Zaim S.
        • Tirman P.
        • Miaux Y.
        • White D.
        • et al.
        Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis.
        Osteoarthritis and cartilage. 2004; 12: 177-190
        • Liebl H.
        • Joseph G.
        • Nevitt M.C.
        • Singh N.
        • Heilmeier U.
        • Subburaj K.
        • et al.
        Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative.
        Annals of the rheumatic diseases. 2015; 74: 1353-1359
        • Martín Noguerol T.
        • Raya J.G.
        • Wessell D.E.
        • Vilanova J.C.
        • Rossi I.
        • Luna A.
        Functional MRI for evaluation of hyaline cartilage extracelullar matrix, a physiopathological-based approach.
        The British Journal of Radiology. 2019; 9220190443
        • Koff M.
        • Amrami K.
        • Kaufman K.R.
        Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis.
        Osteoarthritis and cartilage. 2007; 15: 198-204
        • Choi J.-A.
        • Gold G.E.
        MR imaging of articular cartilage physiology.
        Magn Reson Imaging Clin N Am. 2011; 19 (PubMed PMID: 21665090): 249-282https://doi.org/10.1016/j.mric.2011.02.010
        • Burstein D.
        • Velyvis J.
        • Scott K.T.
        • Stock K.W.
        • Kim Y.J.
        • Jaramillo D.
        • et al.
        Protocol issues for delayed Gd (DTPA) 2–-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage.
        Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2001; 45: 36-41
      2. Rohatgi A. WebPlotDigitizer Pacifica, California, USA.2021 [updated August, 2021; cited 2021 August, 2021]. 4.5:[Available from: https://automeris.io/WebPlotDigitizer.

      3. Wells GA, Shea, B., O'Connell, D., Peterson, J., Welch, V., Losos, M. et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non randomized studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm.

      4. Alliance QIB. QIBA Profile: MR-based cartilage compositional biomarkers (T1ρ,T2) for risk prediction, early diagnosis and monitoring of treatment of degenerative joint disease.: RSNA; 2019 [updated 2020; cited 2022 22 July, 2022]. Available from: https://qibawiki.rsna.org/images/1/1c/QIBA_Profile_MSK-Cartilage-Stage2_Profile.pdf.

        • Chalian M.
        • Li X.
        • Guermazi A.
        • Obuchowski N.A.
        • Carrino J.A.
        • Oei E.H.
        • et al.
        The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage.
        Radiology. 2021; 301 (PubMed PMID: 34491127): 423-432https://doi.org/10.1148/radiol.2021204587
      5. Kendall MG. Kendall's advanced theory of statistics: Distribution theory. 6th ed/by Alan Stuart and J. Keith Ord.. ed. Stuart A, Ord JK, editors. New York: Oxford University Press; 1998.

        • Hedges L.V.
        • Vevea J.L.
        Fixed-and random-effects models in meta-analysis.
        Psychological methods. 1998; 3: 486
        • Higgins J.P.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Statistics in medicine. 2002; 21: 1539-1558
        • Hunter D.J.
        • Li L.
        • Zhang Y.Q.
        • Totterman S.
        • Tamez J.
        • Kwoh C.K.
        • et al.
        Region of interest analysis: by selecting regions with denuded areas can we detect greater amounts of change?.
        Osteoarthritis and Cartilage. 2010; 18: 175-183https://doi.org/10.1016/j.joca.2009.08.002
        • Guyatt G.H.
        • Oxman A.D.
        • Schünemann H.J.
        • Tugwell P.
        • Knottnerus A.
        GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology.
        Journal of clinical epidemiology. 2011; 64: 380-382
      6. Schunemann H, Brozek, J. Guyatt, G., Oxman, A. GRADE Handbook Hamilton, Canada: McMaster University; 2013 [cited 2021 23 November]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html.

        • Wang X.
        • Perry T.A.
        • Arden N.
        • Chen L.
        • Parsons C.M.
        • Cooper C.
        • et al.
        Occupational Risk in Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Observational Studies.
        Arthritis care & research. 2020; 72: 1213-1223
        • Behzadi C.
        • Welsch G.H.
        • Laqmani A.
        • Henes F.O.
        • Kaul M.G.
        • Schoen G.
        • et al.
        The immediate effect of long-distance running on T 2 and T 2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.
        The British journal of radiology. 2016; 8920151075
        • Boocock M.
        • McNair P.
        • Cicuttini F.
        • Stuart A.
        • Sinclair T.
        The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.
        Osteoarthritis and cartilage. 2009; 17: 883-890
        • Bratke G.
        • Bruggemann G.P.
        • Willwacher S.
        • Mählich D.
        • Trudeau M.B.
        • Rohr E.
        • et al.
        Does footwear affect articular cartilage volume change after a prolonged run?.
        Scandinavian journal of medicine & science in sports. 2020; 30: 332-338
        • Brenneman Wilson E.C.
        • Gatti A.A.
        • Keir P.J.
        • Maly M.R.
        Daily cumulative load and body mass index alter knee cartilage response to running in women.
        Gait & Posture. 2021; 88: 192-197https://doi.org/10.1016/j.gaitpost.2021.05.030
        • Crowder H.A.
        • Mazzoli V.
        • Black M.S.
        • Watkins L.E.
        • Kogan F.
        • Hargreaves B.A.
        • et al.
        Characterizing the transient response of knee cartilage to running: Decreases in cartilage T2 of female recreational runners.
        Journal of Orthopaedic Research®. 2021;
        • Eckstein F.
        • Lemberger B.
        • Gratzke C.
        • Hudelmaier M.
        • Glaser C.
        • Englmeier K.
        • et al.
        In vivo cartilage deformation after different types of activity and its dependence on physical training status.
        Annals of the rheumatic diseases. 2005; 64: 291-295
        • Esculier J.-F.
        • Jarrett M.
        • Krowchuk N.M.
        • Rauscher A.
        • Wiggermann V.
        • Taunton J.E.
        • et al.
        Cartilage recovery in runners with and without knee osteoarthritis: A pilot study.
        The Knee. 2019; 26: 1049-1057
        • Gatti A.A.
        • Noseworthy M.D.
        • Stratford P.W.
        • Brenneman E.C.
        • Totterman S.
        • Tamez-Peña J.
        • et al.
        Acute changes in knee cartilage transverse relaxation time after running and bicycling.
        Journal of biomechanics. 2017; 53: 171-177
        • Kersting U.G.
        • Stubendorff J.J.
        • Schmidt M.C.
        • Brüggemann G.-P.
        Changes in knee cartilage volume and serum COMP concentration after running exercise.
        Osteoarthritis and cartilage. 2005; 13: 925-934
        • Lindner D.
        • Chechik Y.
        • Beer Y.
        • Tal S.
        • Lysyy O.
        • Blumenfeld-Katzir T.
        • et al.
        T2 Mapping Values in Postmeniscectomy Knee Articular Cartilage after Running: Early Signs of Osteoarthritis?.
        The Journal of Knee Surgery. 2020;
        • Mosher T.J.
        • Liu Y.
        • Torok C.M.
        Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.
        Osteoarthritis and cartilage. 2010; 18: 358-364
        • Niehoff A.
        • Müller M.
        • Brüggemann L.
        • Savage T.
        • Zaucke F.
        • Eckstein F.
        • et al.
        Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing.
        Osteoarthritis and cartilage. 2011; 19: 1003-1010
        • Subburaj K.
        • Kumar D.
        • Souza R.B.
        • Alizai H.
        • Li X.
        • Link T.M.
        • et al.
        The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults.
        The American journal of sports medicine. 2012; 40: 2134-2141
        • Van Ginckel A.
        • Verdonk P.
        • Victor J.
        • Witvrouw E.
        Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction.
        The American journal of sports medicine. 2013; 41: 550-559
        • Hagemann G.J.
        • Rijke A.M.
        • Corr P.D.
        Do knees survive the Comrades Marathon?.
        South African Medical Journal. 2008; 98: 873-876
        • Heckelman L.N.
        • Riofrio A.D.
        • Vinson E.N.
        • Collins A.T.
        • Gwynn O.R.
        • Utturkar G.M.
        • et al.
        Dose and Recovery Response of Patellofemoral Cartilage Deformations to Running.
        Orthopaedic Journal of Sports Medicine. 2020; 82325967120967512
        • Heckelman L.N.
        • Smith W.A.
        • Riofrio A.D.
        • Vinson E.N.
        • Collins A.T.
        • Gwynn O.R.
        • et al.
        Quantifying the biochemical state of knee cartilage in response to running using T1rho magnetic resonance imaging.
        Scientific reports. 2020; 10: 1-7
        • Hesper T.
        • Miese F.R.
        • Hosalkar H.S.
        • Behringer M.
        • Zilkens C.
        • Antoch G.
        • et al.
        Quantitative T2* assessment of knee joint cartilage after running a marathon.
        European journal of radiology. 2015; 84: 284-289
        • Kessler M.A.
        • Glaser C.
        • Tittel S.
        • Reiser M.
        • Imhoff A.B.
        Volume changes in the menisci and articular cartilage of runners: an in vivo investigation based on 3-D magnetic resonance imaging.
        The American journal of sports medicine. 2006; 34: 832-836
        • Leiter J.R.
        • MacDonald L.
        • McRae S.
        • Davidson M.
        • MacDonald P.B.
        Intrinsic Stresses on Bone and Cartilage in the Normal and Anterior Cruciate Ligament–Reconstructed Knee Before and After a Half Marathon: A Magnetic Resonance Imaging Analysis.
        Clinical Journal of Sport Medicine. 2012; 22: 439-442
        • Schueller-Weidekamm C.
        • Schueller G.
        • Uffmann M.
        • Bader T.
        Does marathon running cause acute lesions of the knee? Evaluation with magnetic resonance imaging.
        European radiology. 2006; 16: 2179-2185
        • Wang Z.
        • Ai S.
        • Tian F.
        • Liow M.H.L.
        • Wang S.
        • Zhao J.
        • et al.
        Higher Body Mass Index Is Associated With Biochemical Changes in Knee Articular Cartilage After Marathon Running: A Quantitative T2-Relaxation MRI Study.
        Orthopaedic Journal of Sports Medicine. 2020; 82325967120943874
        • Zhang M.
        • Li Y.
        • Feng R.
        • Wang Z.
        • Wang W.
        • Zheng N.
        • et al.
        Change in Susceptibility Values in Knee Cartilage After Marathon Running Measured Using Quantitative Susceptibility Mapping.
        Journal of Magnetic Resonance Imaging. 2021;
        • Zhang P.
        • Yu B.
        • Zhang R.
        • Chen X.
        • Shao S.
        • Zeng Y.
        • et al.
        Longitudinal study of the morphological and T2* changes of knee cartilages of marathon runners using prototype software for automatic cartilage segmentation.
        The British Journal of Radiology. 2021; 9420200833
        • Vincent T.L.
        • Wann A.K.
        Mechanoadaptation: articular cartilage through thick and thin.
        The Journal of physiology. 2019; 597: 1271-1281
        • Luke A.C.
        • Stehling C.
        • Stahl R.
        • Li X.
        • Kay T.
        • Takamoto S.
        • et al.
        High-field magnetic resonance imaging assessment of articular cartilage before and after marathon running: does long-distance running lead to cartilage damage?.
        The American journal of sports medicine. 2010; 38: 2273-2280
        • Froimson M.I.
        • Ratcliffe A.
        • Gardner T.R.
        • Mow V.C.
        Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation.
        Osteoarthritis and Cartilage. 1997; 5: 377-386
        • Hart H.F.
        • Patterson B.E.
        • Crossley K.M.
        • Culvenor A.G.
        • Khan M.C.M.
        • King M.G.
        • et al.
        May the force be with you: understanding how patellofemoral joint reaction force compares across different activities and physical interventions—a systematic review and meta-analysis.
        British Journal of Sports Medicine. 2022; (bjsports-2021) (104686)https://doi.org/10.1136/bjsports-2021-104686
        • Scott S.H.
        • Winter D.A.
        Internal forces of chronic running injury sites.
        Medicine and science in sports and exercise. 1990; 22 (PubMed PMID: 2381304): 357-369
        • Saxby D.J.
        • Modenese L.
        • Bryant A.L.
        • Gerus P.
        • Killen B.
        • Fortin K.
        • et al.
        Tibiofemoral contact forces during walking, running and sidestepping.
        Gait & posture. 2016; 49: 78-85
        • Powers C.M.
        • Witvrouw E.
        • Davis I.S.
        • Crossley K.M.
        Evidence-based framework for a pathomechanical model of patellofemoral pain: 2017 patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester, UK: part 3.
        British journal of sports medicine. 2017; 51: 1713-1723
        • Farrokhi S.
        • Colletti P.M.
        • Powers C.M.
        Differences in Patellar Cartilage Thickness, Transverse Relaxation Time, and Deformational Behavior: A Comparison of Young Women With and Without Patellofemoral Pain.
        Am J Sports Med. 2011; 39: 384-391https://doi.org/10.1177/0363546510381363
        • Cutcliffe H.C.
        • DeFrate L.E.
        Comparison of cartilage mechanical properties measured during creep and recovery.
        Scientific reports. 2020; 10: 1-8
        • Eckstein F.
        • Tieschky M.
        • Faber S.
        • Englmeier K.-H.
        • Reiser M.
        Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo.
        Anatomy and embryology. 1999; 200: 419-424