Advertisement

The role of mitochondrial fission in intervertebral disc degeneration

Published:November 11, 2022DOI:https://doi.org/10.1016/j.joca.2022.10.020

      Summary

      Low back pain (LBP) is an extremely common disorder and is a major cause of disability globally. Intervertebral disc degeneration (IVDD) is the main contributor to LBP. Nevertheless, the specific mechanisms underlying the pathogenesis of IVDD remain unclear. Mitochondria are highly dynamic organelles that continuously undergo fusion and fission, known as mitochondrial dynamics. Accumulating evidence has revealed that aberrantly activated mitochondrial fission leads to mitochondrial fragmentation and dysfunction, which are involved in the development and progression of IVDD. To date, research into mitochondrial dynamics in IVDD is at an early stage. The present narrative review aims to summarize the most recent findings about the role of mitochondrial fission in the pathogenesis of IVDD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hartvigsen J.
        • Hancock M.
        • Kongsted A.
        • Louw Q.
        • Ferreira M.
        • Genevay S.
        • et al.
        What low back pain is and why we need to pay attention.
        Lancet. 2018; 391: 2356-2367
        • Maher C.
        • Underwood M.
        • Buchbinder R.
        Non-specific low back pain.
        Lancet. 2017; 389: 736-747
        • Cieza A.
        • Causey K.
        • Kamenov K.
        • Hanson S.W.
        • Chatterji S.
        • Vos T.
        Global estimates of the need for rehabilitation based on the global burden of disease study 2019: a systematic analysis for the global burden of disease study 2019.
        Lancet. 2021; 396: 2006-2017
        • Mohd Isa I.
        • Mokhtar S.
        • Abbah S.
        • Fauzi M.
        • Devitt A.
        • Pandit A.
        Intervertebral disc degeneration: biomaterials and tissue engineering strategies toward precision medicine.
        Adv Healthc Mater. 2022; 11e2102530
        • Livshits G.
        • Popham M.
        • Malkin I.
        • Sambrook P.N.
        • Macgregor A.J.
        • Spector T.
        • et al.
        Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study.
        Ann Rheum Dis. 2011; 70: 1740-1745
        • Cheung K.M.
        • Karppinen J.
        • Chan D.
        • Ho D.W.
        • Song Y.Q.
        • Sham P.
        • et al.
        Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals.
        Spine. 2009; 34: 934-940
        • Modic M.
        • Ross J.
        Lumbar degenerative disk disease.
        Radiology. 2007; 245: 43-61
        • Wise C.
        • Sepich D.
        • Ushiki A.
        • Khanshour A.
        • Kidane Y.
        • Makki N.
        • et al.
        The cartilage matrisome in adolescent idiopathic scoliosis.
        Bone Res. 2020; 8: 13
        • Huang Y.
        • Leung V.
        • Lu W.
        • Luk K.
        The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc.
        Spine J. 2013; 13: 352-362
        • Kamali A.
        • Ziadlou R.
        • Lang G.
        • Pfannkuche J.
        • Cui S.
        • Li Z.
        • et al.
        Small molecule-based treatment approaches for intervertebral disc degeneration: current options and future directions.
        Theranostics. 2021; 11: 27-47
        • Francisco V.
        • Pino J.
        • González-Gay M.
        • Lago F.
        • Karppinen J.
        • Tervonen O.
        • et al.
        A new immunometabolic perspective of intervertebral disc degeneration.
        Nat Rev Rheumatol. 2022; 18: 47-60
        • Cao G.
        • Yang S.
        • Cao J.
        • Tan Z.
        • Wu L.
        • Dong F.
        • et al.
        The role of oxidative stress in intervertebral disc degeneration.
        Oxid Med Cell Longev. 2022; 20222166817
        • Feng C.
        • Yang M.
        • Lan M.
        • Liu C.
        • Zhang Y.
        • Huang B.
        • et al.
        ROS: crucial Intermediators in the pathogenesis of intervertebral disc degeneration.
        Oxid Med Cell Longev. 2017; 20175601593
        • Urban J.
        • Smith S.
        • Fairbank J.
        Nutrition of the intervertebral disc.
        Spine. 2004; 29: 2700-2709
        • Madhu V.
        • Boneski P.
        • Silagi E.
        • Qiu Y.
        • Kurland I.
        • Guntur A.
        • et al.
        Hypoxic regulation of mitochondrial metabolism and mitophagy in nucleus pulposus cells is dependent on HIF-1α-BNIP3 Axis.
        J Bone Miner Res. 2020; 35: 1504-1524
        • Gan J.
        • Ducheyne P.
        • Vresilovic E.
        • Shapiro I.
        Intervertebral disc tissue engineering II: cultures of nucleus pulposus cells.
        Clin Orthop Relat Res. 2003; : 315-324
        • Hu B.
        • Wang P.
        • Zhang S.
        • Liu W.
        • Lv X.
        • Shi D.
        • et al.
        HSP70 attenuates compression-induced apoptosis of nucleus pulposus cells by suppressing mitochondrial fission via upregulating the expression of SIRT3.
        Exp Mol Med. 2022; 54: 309-323
        • Song Y.
        • Li S.
        • Geng W.
        • Luo R.
        • Liu W.
        • Tu J.
        • et al.
        Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration.
        Redox Biol. 2018; 19: 339-353
        • McBride H.
        • Neuspiel M.
        • Wasiak S.
        Mitochondria: more than just a powerhouse.
        Curr Biol. 2006; 16: R551-R560
        • Fontana F.
        • Limonta P.
        The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer.
        Free Radic Biol Med. 2021; 176: 203-221
        • Detmer S.
        • Chan D.
        Functions and dysfunctions of mitochondrial dynamics.
        Nat Rev Mol Cell Biol. 2007; 8: 870-879
        • Jin J.
        • Wei X.
        • Zhi X.
        • Wang X.
        • Meng D.
        Drp1-dependent mitochondrial fission in cardiovascular disease.
        Acta Pharmacol Sin. 2021; 42: 655-664
        • Nakada K.
        • Inoue K.
        • Ono T.
        • Isobe K.
        • Ogura A.
        • Goto Y.
        • et al.
        Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA.
        Nat Med. 2001; 7: 934-940
        • Sharma A.
        • Smith H.
        • Yao P.
        • Mair W.
        Causal roles of mitochondrial dynamics in longevity and healthy aging.
        EMBO Rep. 2019; 20e48395
        • Xie J.
        • Li Y.
        • Jin J.
        The essential functions of mitochondrial dynamics in immune cells.
        Cell Mol Immunol. 2020; 17: 712-721
        • Quiles J.
        • Gustafsson Å.
        The role of mitochondrial fission in cardiovascular health and disease.
        Nat Rev Cardiol. 2022;
        • Meyer J.
        • Leuthner T.
        • Luz A.
        Mitochondrial fusion, fission, and mitochondrial toxicity.
        Toxicology. 2017; 391: 42-53
        • Youle R.J.
        • Karbowski M.
        Mitochondrial fission in apoptosis.
        Nat Rev Mol Cell Biol. 2005; 6: 657-663
        • Hu C.
        • Huang Y.
        • Li L.
        Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals.
        Int J Mol Sci. 2017; 18
        • Basu K.
        • Lajoie D.
        • Aumentado-Armstrong T.
        • Chen J.
        • Koning R.
        • Bossy B.
        • et al.
        Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy.
        PLoS One. 2017; 12e0179397
        • Simula L.
        • Campanella M.
        • Campello S.
        Targeting Drp1 and mitochondrial fission for therapeutic immune modulation.
        Pharmacol Res. 2019; 146104317
        • Prinz W.
        • Toulmay A.
        • Balla T.
        The functional universe of membrane contact sites.
        Nat Rev Mol Cell Biol. 2020; 21: 7-24
        • Friedman J.
        • Lackner L.
        • West M.
        • DiBenedetto J.
        • Nunnari J.
        • Voeltz G.
        ER tubules mark sites of mitochondrial division.
        Science. 2011; 334: 358-362
        • Han H.
        • Tan J.
        • Wang R.
        • Wan H.
        • He Y.
        • Yan X.
        • et al.
        PINK1 phosphorylates Drp1 to regulate mitophagy-independent mitochondrial dynamics.
        EMBO Rep. 2020; 21e48686
        • Song Y.
        • Lu S.
        • Geng W.
        • Feng X.
        • Luo R.
        • Li G.
        • et al.
        Mitochondrial quality control in intervertebral disc degeneration.
        Exp Mol Med. 2021; 53: 1124-1133
        • Sun K.
        • Jing X.
        • Guo J.
        • Yao X.
        • Guo F.
        Mitophagy in degenerative joint diseases.
        Autophagy. 2021; 17: 2082-2092
        • Gustafsson Å.B.
        • Dorn 2nd, G.W.
        Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process.
        Physiol Rev. 2019; 99: 853-892
        • Ajoolabady A.
        • Chiong M.
        • Lavandero S.
        • Klionsky D.J.
        • Ren J.
        Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment.
        Trends Mol Med. 2022; 28: 836-849
        • Bertholet A.
        • Delerue T.
        • Millet A.
        • Moulis M.
        • David C.
        • Daloyau M.
        • et al.
        Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity.
        Neurobiol Dis. 2016; 90: 3-19
        • Xian H.
        • Liou Y.C.
        Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy.
        Cell Death Differ. 2021; 28: 827-842
        • Tanaka A.
        • Cleland M.M.
        • Xu S.
        • Narendra D.P.
        • Suen D.F.
        • Karbowski M.
        • et al.
        Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin.
        J Cell Biol. 2010; 191: 1367-1380
        • Yamashita S.I.
        • Jin X.
        • Furukawa K.
        • Hamasaki M.
        • Nezu A.
        • Otera H.
        • et al.
        Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy.
        J Cell Biol. 2016; 215: 649-665
        • Mendl N.
        • Occhipinti A.
        • Müller M.
        • Wild P.
        • Dikic I.
        • Reichert A.S.
        Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2.
        J Cell Sci. 2011; 124: 1339-1350
        • Shirihai O.S.
        • Song M.
        • Dorn 2nd, G.W.
        How mitochondrial dynamism orchestrates mitophagy.
        Circ Res. 2015; 116: 1835-1849
        • Forte M.
        • Schirone L.
        • Ameri P.
        • Basso C.
        • Catalucci D.
        • Modica J.
        • et al.
        The role of mitochondrial dynamics in cardiovascular diseases.
        Br J Pharmacol. 2021; 178: 2060-2076
        • Dorn G.
        Mitofusins as mitochondrial anchors and tethers.
        J Mol Cell Cardiol. 2020; 142: 146-153
        • Yang Y.
        • Lei W.
        • Zhao L.
        • Wen Y.
        • Li Z.
        Insights into mitochondrial dynamics in chlamydial infection.
        Front Cell Infect Microbiol. 2022; 12835181
        • Ge Y.
        • Shi X.
        • Boopathy S.
        • McDonald J.
        • Smith A.
        • Chao L.
        Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane.
        eLife. 2020; 9
        • Risbud M.V.
        • Shapiro I.M.
        Role of cytokines in intervertebral disc degeneration: pain and disc content.
        Nat Rev Rheumatol. 2014; 10: 44-56
        • Jimbo K.
        • Park J.S.
        • Yokosuka K.
        • Sato K.
        • Nagata K.
        Positive feedback loop of interleukin-1beta upregulating production of inflammatory mediators in human intervertebral disc cells in vitro.
        J Neurosurg Spine. 2005; 2: 589-595
        • Yang W.
        • Jia C.
        • Liu L.
        • Fu Y.
        • Wu Y.
        • Liu Z.
        • et al.
        Hypoxia-inducible factor-1α protects against intervertebral disc degeneration through antagonizing mitochondrial oxidative stress.
        Inflammation. 2022;
        • Zhou T.
        • Yang X.
        • Chen Z.
        • Yang Y.
        • Wang X.
        • Cao X.
        • et al.
        Prussian blue nanoparticles stabilize SOD1 from ubiquitination-proteasome degradation to rescue intervertebral disc degeneration.
        Adv Sci. 2022; 9e2105466
        • Forman H.J.
        • Zhang H.
        Targeting oxidative stress in disease: promise and limitations of antioxidant therapy.
        Nat Rev Drug Discov. 2021; 20: 689-709
        • Neidlinger-Wilke C.
        • Galbusera F.
        • Pratsinis H.
        • Mavrogonatou E.
        • Mietsch A.
        • Kletsas D.
        • et al.
        Mechanical loading of the intervertebral disc: from the macroscopic to the cellular level.
        Eur Spine J. 2014; 23: S333-S343
        • Wang D.
        • Peng P.
        • Dudek M.
        • Hu X.
        • Xu X.
        • Shang Q.
        • et al.
        Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration.
        Bone Res. 2022; 10: 20
        • Xiao L.
        • Hu B.
        • Ding B.
        • Zhao Q.
        • Liu C.
        • Öner F.C.
        • et al.
        N(6)-methyladenosine RNA methyltransferase like 3 inhibits extracellular matrix synthesis of endplate chondrocytes by downregulating sex-determining region Y-Box transcription factor 9 expression under tension.
        Osteoarthr Cartil. 2022; 30: 613-625
        • Wang B.
        • Ke W.
        • Wang K.
        • Li G.
        • Ma L.
        • Lu S.
        • et al.
        Mechanosensitive ion channel Piezo1 activated by matrix stiffness regulates oxidative stress-induced senescence and apoptosis in human intervertebral disc degeneration.
        Oxid Med Cell Longev. 2021; 20218884922
        • Wu J.
        • Chen Y.
        • Liao Z.
        • Liu H.
        • Zhang S.
        • Zhong D.
        • et al.
        Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration.
        Mol Ther. 2022;
        • Liu T.
        • Zhang L.
        • Joo D.
        • Sun S.C.
        NF-κB signaling in inflammation.
        Signal Transduct Target Ther. 2017; 217023
        • Xu D.
        • Jin H.
        • Wen J.
        • Chen J.
        • Chen D.
        • Cai N.
        • et al.
        Hydrogen sulfide protects against endoplasmic reticulum stress and mitochondrial injury in nucleus pulposus cells and ameliorates intervertebral disc degeneration.
        Pharmacol Res. 2017; 117: 357-369
        • Guo W.
        • Kan J.
        • Cheng Z.
        • Chen J.
        • Shen Y.
        • Xu J.
        • et al.
        Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction.
        Oxid Med Cell Longev. 2012; 2012878052
        • Gong W.
        • Zhang S.
        • Chen Y.
        • Shen J.
        • Zheng Y.
        • Liu X.
        • et al.
        Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis.
        Free Radic Biol Med. 2022; 181: 29-42
        • Wang Y.
        • Che M.
        • Xin J.
        • Zheng Z.
        • Li J.
        • Zhang S.
        The role of IL-1β and TNF-α in intervertebral disc degeneration.
        Biomed Pharmacother. 2020; 131110660
        • Yu H.
        • Hou G.
        • Cao J.
        • Yin Y.
        • Zhao Y.
        • Cheng L.
        κMangiferin alleviates mitochondrial ROS in nucleus pulposus cells and protects against intervertebral disc degeneration via suppression of NF-B signaling pathway.
        Oxid Med Cell Longev. 2021; 20216632786
        • Matkowski A.
        • Kuś P.
        • Góralska E.
        • Woźniak D.
        Mangiferin – a bioactive xanthonoid, not only from mango and not just antioxidant.
        Mini Rev Med Chem. 2013; 13: 439-455
        • Barriga M.
        • Benitez R.
        • Ferraz-de-Paula V.
        • Garcia-Frutos M.
        • Caro M.
        • Robledo G.
        • et al.
        Protective role of cortistatin in pulmonary inflammation and fibrosis.
        Br J Pharmacol. 2021; 178: 4368-4388
        • Zhao Y.
        • Qiu C.
        • Wang W.
        • Peng J.
        • Cheng X.
        • Shangguan Y.
        • et al.
        Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation.
        Theranostics. 2020; 10: 7015-7033
        • Peng X.
        • Zhang C.
        • Zhou Z.
        • Wang K.
        • Gao J.
        • Qian Z.
        • et al.
        A20 attenuates pyroptosis and apoptosis in nucleus pulposus cells via promoting mitophagy and stabilizing mitochondrial dynamics.
        Inflamm Res. 2022; 71: 695-710
        • Wu Y.
        • He X.
        • Huang N.
        • Yu J.
        • Shao B.
        A20: a master regulator of arthritis.
        Arthritis Res Ther. 2020; 22: 220
        • Kang L.
        • Liu S.
        • Li J.
        • Tian Y.
        • Xue Y.
        • Liu X.
        The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance.
        Cell Prolif. 2020; 53e12779
        • Braakhuis A.
        • Nagulan R.
        • Somerville V.
        The effect of MitoQ on aging-related biomarkers: a systematic review and meta-analysis.
        Oxid Med Cell Longev. 2018; 20188575263
        • Terada H.
        Uncouplers of oxidative phosphorylation.
        Environ Health Perspect. 1990; 87: 213-218
        • Tanaka A.
        • Youle R.
        A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis.
        Molecular cell. 2008; 29: 409-410
        • Garrido C.
        • Brunet M.
        • Didelot C.
        • Zermati Y.
        • Schmitt E.
        • Kroemer G.
        Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties.
        Cell Cycle. 2006; 5: 2592-2601
        • Zhang J.
        • Xiang H.
        • Liu J.
        • Chen Y.
        • He R.
        • Liu B.
        Mitochondrial Sirtuin 3: new emerging biological function and therapeutic target.
        Theranostics. 2020; 10: 8315-8342
        • Gong Y.
        • Tang N.
        • Liu P.
        • Sun Y.
        • Lu S.
        • Liu W.
        • et al.
        Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells.
        Autophagy. 2022; 18: 1503-1521
        • Zhang J.
        • He Z.
        • Fedorova J.
        • Logan C.
        • Bates L.
        • Davitt K.
        • et al.
        Alterations in mitochondrial dynamics with age-related Sirtuin1/Sirtuin3 deficiency impair cardiomyocyte contractility.
        Aging Cell. 2021; 20e13419
        • Wang J.
        • Nisar M.
        • Huang C.
        • Pan X.
        • Lin D.
        • Zheng G.
        • et al.
        Small molecule natural compound agonist of SIRT3 as a therapeutic target for the treatment of intervertebral disc degeneration.
        Exp Mol Med. 2018; 50: 1-14
        • Hu S.
        • Zhang C.
        • Qian T.
        • Bai Y.
        • Chen L.
        • Chen J.
        • et al.
        Promoting Nrf2/Sirt3-dependent mitophagy suppresses apoptosis in nucleus pulposus cells and protects against intervertebral disc degeneration.
        Oxid Med Cell Longev. 2021; 20216694964
        • Pillai V.
        • Samant S.
        • Sundaresan N.
        • Raghuraman H.
        • Kim G.
        • Bonner M.
        • et al.
        Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3.
        Nat Commun. 2015; 6: 6656
        • Kang L.
        • Liu S.
        • Li J.
        • Tian Y.
        • Xue Y.
        • Liu X.
        Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses.
        Life Sci. 2020; 243117244
        • Du Q.
        • Peng C.
        • Zhang H.
        Polydatin: a review of pharmacology and pharmacokinetics.
        Pharm Biol. 2013; 51: 1347-1354
        • Du K.
        • Farhood A.
        • Jaeschke H.
        Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity.
        Arch Toxicol. 2017; 91: 761-773
        • Zoidis E.
        • Seremelis I.
        • Kontopoulos N.
        • Danezis G.
        Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins.
        Antioxidants. 2018; 7
        • Tindell R.
        • Wall S.
        • Li Q.
        • Li R.
        • Dunigan K.
        • Wood R.
        • et al.
        Selenium supplementation of lung epithelial cells enhances nuclear factor E2-related factor 2 (Nrf2) activation following thioredoxin reductase inhibition.
        Redox Biol. 2018; 19: 331-338
        • Wang P.
        • Zhang S.
        • Liu W.
        • Chen S.
        • Lv X.
        • Hu B.
        • et al.
        Selenium attenuates TBHP-induced apoptosis of nucleus pulposus cells by suppressing mitochondrial fission through activating nuclear factor erythroid 2-related factor 2.
        Oxid Med Cell Longev. 2022; 20227531788
        • Gonzalo S.
        • Kreienkamp R.
        • Askjaer P.
        Hutchinson-gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations.
        Ageing Res Rev. 2017; 33: 18-29
        • Xu X.
        • Wang D.
        • Zheng C.
        • Gao B.
        • Fan J.
        • Cheng P.
        • et al.
        Progerin accumulation in nucleus pulposus cells impairs mitochondrial function and induces intervertebral disc degeneration and therapeutic effects of sulforaphane.
        Theranostics. 2019; 9: 2252-2267
        • Osorio F.
        • Navarro C.
        • Cadiñanos J.
        • López-Mejía I.
        • Quirós P.
        • Bartoli C.
        • et al.
        Splicing-directed therapy in a new mouse model of human accelerated aging.
        Sci Transl Med. 2011; 3: 106ra107
        • Russo M.
        • Spagnuolo C.
        • Russo G.
        • Skalicka-Woźniak K.
        • Daglia M.
        • Sobarzo-Sánchez E.
        • et al.
        Nrf2 targeting by sulforaphane: a potential therapy for cancer treatment.
        Crit Rev Food Sci Nutr. 2018; 58: 1391-1405
        • Miller Y.
        • Shyy J.
        Context-dependent role of oxidized lipids and lipoproteins in inflammation.
        Trends Endocrinol Metab. 2017; 28: 143-152
        • Wu W.
        • Jing D.
        • Huang X.
        • Yang W.
        • Shao Z.
        Drp1-mediated mitochondrial fission is involved in oxidized low-density lipoprotein-induced AF cella poptosis.
        J Orthop Res. 2021; 39: 1496-1504
        • Li X.
        • Wang X.
        • Hu Z.
        • Chen Z.
        • Li H.
        • Liu X.
        • et al.
        Possible involvement of the oxLDL/LOX-1 system in the pathogenesis and progression of human intervertebral disc degeneration or herniation.
        Sci Rep. 2017; 7: 7403
        • Moqbel S.
        • Zeng R.
        • Ma D.
        • Xu L.
        • Lin C.
        • He Y.
        • et al.
        The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway.
        Stem Cell Res Ther. 2022; 13: 127
        • Xu L.
        • Wu Z.
        • He Y.
        • Chen Z.
        • Xu K.
        • Yu W.
        • et al.
        MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis.
        Osteoarthr Cartil. 2020; 28: 1079-1091
        • Yao X.
        • Zhang J.
        • Jing X.
        • Ye Y.
        • Guo J.
        • Sun K.
        • et al.
        Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission.
        Pharmacol Res. 2019; 139: 314-324