Advertisement

Hypoxia and Wnt signaling inversely regulate expression of chondroprotective molecule ANP32A in articular cartilage

  • J. Quintiens
    Affiliations
    Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium

    Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
    Search for articles by this author
  • A. De Roover
    Affiliations
    Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • F.M.F. Cornelis
    Affiliations
    Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • A. Escribano-Núñez
    Affiliations
    Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • A. Sermon
    Affiliations
    Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium

    Trauma Research and Innovation Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • S. Pazmino
    Affiliations
    Clinical Research Unit, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • Author Footnotes
    a S. Monteagudo and R.J Lories equally contributed as senior and corresponding authors.
    S. Monteagudo
    Correspondence
    Address correspondence and reprint requests to: S. Monteagudo, Skeletal Biology and Engineering Research Center, Herestraat 49, Box 813, B-3000, Leuven, Belgium. Tel: 32-16-342541; Fax: 32-16-342543.
    Footnotes
    a S. Monteagudo and R.J Lories equally contributed as senior and corresponding authors.
    Affiliations
    Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Search for articles by this author
  • Author Footnotes
    a S. Monteagudo and R.J Lories equally contributed as senior and corresponding authors.
    R.J. Lories
    Correspondence
    Address correspondence and reprint requests to: R. Lories, Skeletal Biology and Engineering Research Center, Herestraat 49, Box 813, B-3000, Leuven, Belgium. Tel: 32-16-342541; Fax: 32-16-342543.
    Footnotes
    a S. Monteagudo and R.J Lories equally contributed as senior and corresponding authors.
    Affiliations
    Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium

    Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
    Search for articles by this author
  • Author Footnotes
    a S. Monteagudo and R.J Lories equally contributed as senior and corresponding authors.
Published:November 09, 2022DOI:https://doi.org/10.1016/j.joca.2022.10.019

      Summary

      Objectives

      ANP32A is a key protector of cartilage health, via preventing oxidative stress and Wnt hyper-activation. We aimed to unravel how ANP32A is regulated in cartilage.

      Methods

      A bioinformatics pipeline was applied to identify regulators of ANP32A. Pathways of interest were targeted to study their impact on ANP32A in in vitro cultures of the human chondrocyte C28/I2 cell-line and primary human articular chondrocytes (hACs) from up to five different donors, using Wnt-activator CHIR99021, hypoxia-mimetic IOX2 and a hypoxia chamber. ANP32A was evaluated using RT-qPCR and Western blot. In vivo, the effect of hypoxia was examined by immunohistochemistry in mice injected intra-articularly with IOX2 after destabilization of the medial meniscus. Effects of Wnt hyper-activation were investigated using Frzb-knockout mice and wild-type mice treated intra-articularly with CHIR99021. Wnt inhibition effects were assessed upon intra-articular injection of XAV939.

      Results

      The hypoxia and Wnt signaling pathways were identified as networks controlling ANP32A expression. In vitro and in vivo experiments demonstrated increases in ANP32A upon hypoxic conditions (1.3-fold in hypoxia in C28/I2 cells with 95% confidence interval (CI) [1.11–1.54] and 1.90-fold in hACs [95% CI: 1.56–2] and 1.67-fold in ANP32A protein levels after DMM surgery with IOX2 injections [95% CI: 1.33–2.08]). Wnt hyper-activation decreased ANP32A in chondrocytes in vitro (1.23-fold decrease [95% CI: 1.02–1.49]) and in mice (1.45-fold decrease after CHIR99021 injection [95% CI: 1.22–1.72] and 1.41-fold decrease in Frzb-knockout mice [95% CI: 1.00–1.96]). Hypoxia and Wnt modulated ATM, an ANP32A target gene, in hACs (1.89-fold increase [95% CI: 1.38–2.60] and 1.41-fold decrease [95% CI: 1.02–1.96]).

      Conclusions

      Maintaining hypoxia and limiting Wnt activation sustain ANP32A and protect against osteoarthritis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cornelis F.M.F.
        • Monteagudo S.
        • Guns L.K.A.
        • den Hollander W.
        • Nelissen R.
        • Storms L.
        • et al.
        ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone.
        Sci Transl Med. 2018; 10
        • Reilly P.T.
        • Yu Y.
        • Hamiche A.
        • Wang L.
        Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications.
        Bioessays. 2014; 36: 1062-1071
        • Monteagudo S.
        • Cornelis F.M.F.
        • Wang X.
        • de Roover A.
        • Peeters T.
        • Quintiens J.
        • et al.
        ANP32A represses Wnt signaling across tissues thereby protecting against osteoarthritis and heart disease.
        Osteoarthr Cartil. 2022; 30: 724-734
        • Valdes A.M.
        • Loughlin J.
        • Timms K.M.
        • van Meurs J.J.
        • Southam L.
        • Wilson S.G.
        • et al.
        Genome-wide association scan identifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis.
        Am J Hum Genet. 2008; 82: 1231-1240
        • Valdes A.M.
        • Lories R.J.
        • van Meurs J.B.
        • Kerkhof H.
        • Doherty S.
        • Hofman A.
        • et al.
        Variation at the ANP32A gene is associated with risk of hip osteoarthritis in women.
        Arthritis Rheumatol. 2009; 60: 2046-2054
        • Lories R.J.
        • Corr M.
        • Lane N.E.
        To Wnt or not to Wnt: the bone and joint health dilemma.
        Nat Rev Rheumatol. 2013; 9: 328-339
        • Zhu M.
        • Tang D.
        • Wu Q.
        • Hao S.
        • Chen M.
        • Xie C.
        • et al.
        Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice.
        J Bone Miner Res. 2009; 24: 12-21
        • De Roover A.
        • Núñez A.E.
        • Cornelis F.M.
        • Cherifi C.
        • Casas-Fraile L.
        • Sermon A.
        • et al.
        Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis.
        JCI Insight. 2021; 6
        • Sandelin A.
        • Wasserman W.W.
        • Lenhard B.
        ConSite: web-based prediction of regulatory elements using cross-species comparison.
        Nucleic Acids Res. 2004; 32: W249-W252
        • Ghosh D.
        Object-oriented transcription factors database (ooTFD).
        Nucleic Acids Res. 2000; 28: 308-310
        • Livyatan I.
        • Aaronson Y.
        • Gokhman D.
        • Ashkenazi R.
        • Meshorer E.
        BindDB: an integrated database and webtool platform for “Reverse-ChIP” epigenomic analysis.
        Cell Stem Cell. 2015; 17: 647-648
        • Messeguer X.
        • Escudero R.
        • Farré D.
        • Núñez O.
        • Martínez J.
        • Albà M.M.
        PROMO: detection of known transcription regulatory elements using species-tailored searches.
        Bioinformatics. 2002; 18: 333-334
        • Dreos R.
        • Ambrosini G.
        • Périer R.C.
        • Bucher P.
        The eukaryotic promoter database: expansion of EPDnew and new promoter analysis tools.
        Nucleic Acids Res. 2015; 43: D92-D96
        • Oshchepkov D.Y.
        • Levitsky V.G.
        Silico prediction of transcriptional factor-binding sites.
        in: Yu B. Hinchcliffe M. Silico Tools for Gene Discovery. Humana Press, 2011
        • Jayaram N.
        • Usvyat D.
        • Martin Andrew C.R.
        Evaluating tools for transcription factor binding site prediction.
        BMC Bioinform. 2016; 17: 547
        • Szklarczyk D.
        • Gable A.L.
        • Lyon D.
        • Junge A.
        • Wyder S.
        • Huerta-Cepas J.
        • et al.
        STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.
        Nucleic Acids Res. 2019; 47: D607-D613
        • Greene C.S.
        • Krishnan A.
        • Wong A.K.
        • Ricciotti E.
        • Zelaya R.A.
        • Himmelstein D.S.
        • et al.
        Understanding multicellular function and disease with human tissue-specific networks.
        Nat Genet. 2015; 47: 569-576
        • Krämer A.
        • Green J.
        • Pollard Jr., J.
        • Tugendreich S.
        Causal analysis approaches in ingenuity pathway analysis.
        Bioinformatics. 2014; 30: 523-530
        • Goldring M.B.
        • Birkhead J.R.
        • Suen L.F.
        • Yamin R.
        • Mizuno S.
        • Glowacki J.
        • et al.
        Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes.
        J Clin Investig. 1994; 94: 2307-2316
        • Monteagudo S.
        • Cornelis F.M.F.
        • Aznar-Lopez C.
        • Yibmantasiri P.
        • Guns L.A.
        • Carmeliet P.
        • et al.
        DOT1L safeguards cartilage homeostasis and protects against osteoarthritis.
        Nat Commun. 2017; 815889
        • Glasson S.S.
        • Blanchet T.J.
        • Morris E.A.
        The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse.
        Osteoarthr Cartil. 2007; 15: 1061-1069
        • Lories R.J.
        • Peeters J.
        • Bakker A.
        • Tylzanowski P.
        • Derese I.
        • Schrooten J.
        • et al.
        Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice.
        Arthritis Rheumatol. 2007; 56: 4095-4103
        • Jensen E.C.
        Quantitative analysis of histological staining and fluorescence using ImageJ.
        Anat Rec. 2013; 296: 378-381
        • Schneider C.A.
        • Rasband W.S.
        • Eliceiri K.W.
        NIH Image to ImageJ: 25 years of image analysis.
        Nat Methods. 2012; 9: 671-675
        • Thoms B.L.
        • Dudek K.A.
        • Lafont J.E.
        • Murphy C.L.
        Hypoxia promotes the production and inhibits the destruction of human articular cartilage.
        Arthritis Rheumatol. 2013; 65: 1302-1312
        • Okada K.
        • Mori D.
        • Makii Y.
        • Nakamoto H.
        • Murahashi Y.
        • Yano F.
        • et al.
        Hypoxia-inducible factor-1 alpha maintains mouse articular cartilage through suppression of NF-κB signaling.
        Sci Rep. 2020; 10: 5425
        • Choudhry H.
        • Harris A.L.
        Advances in hypoxia-inducible factor biology.
        Cell Metab. 2018; 27: 281-298
        • Kaelin Jr., W.G.
        • Ratcliffe P.J.
        Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.
        Mol Cell. 2008; 30: 393-402
        • Castro-Mondragon J.A.
        • Riudavets-Puig R.
        • Rauluseviciute I.
        • Berhanu Lemma R.
        • Turchi L.
        • Blanc-Mathieu R.
        • et al.
        JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles.
        Nucleic Acids Res. 2022; 50: D165-D173
        • Lories R.J.
        • Monteagudo S.
        Review article: is Wnt signaling an attractive target for the treatment of osteoarthritis?.
        Rheumatol Ther. 2020; 7: 259-270
        • Monteagudo S.
        • Lories R.J.
        Cushioning the cartilage: a canonical Wnt restricting matter.
        Nat Rev Rheumatol. 2017; 13: 670-681
        • Lories R.J.
        • Peeters J.
        • Szlufcik K.
        • Hespel P.
        • Luyten F.P.
        Deletion of frizzled-related protein reduces voluntary running exercise performance in mice.
        Osteoarthr Cartil. 2009; 17: 390-396
        • Cadigan K.M.
        • Waterman M.L.
        TCF/LEFs and Wnt signaling in the nucleus.
        Cold Spring Harb Perspect Biol. 2012; 4
        • Chowdhury R.
        • Candela-Lena J.I.
        • Chan M.C.
        • Greenald D.J.
        • Yeoh K.K.
        • Tian Y.M.
        • et al.
        Selective small molecule probes for the hypoxia inducible factor (HIF) prolyl hydroxylases.
        ACS Chem Biol. 2013; 8: 1488-1496
        • Zhang F.J.
        • Luo W.
        • Lei G.H.
        Role of HIF-1α and HIF-2α in osteoarthritis.
        Jt Bone Spine. 2015; 82: 144-147
        • Bouaziz W.
        • Sigaux J.
        • Modrowski D.
        • Devignes C.S.
        • Funck-Brentano T.
        • Richette P.
        • et al.
        Interaction of HIF1alpha and beta-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice.
        Proc Natl Acad Sci U S A. 2016; 113: 5453-5458
        • Markway B.D.
        • Cho H.
        • Zilberman-Rudenko J.
        • Holden P.
        • McAlinden A.
        • Johnstone B.
        Hypoxia-inducible factor 3-alpha expression is associated with the stable chondrocyte phenotype.
        J Orthop Res. 2015; 33: 1561-1570
        • Li V.S.
        • Ng S.S.
        • Boersema P.J.
        • Low T.Y.
        • Karthaus W.R.
        • Gerlach J.P.
        • et al.
        Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex.
        Cell. 2012; 149: 1245-1256
        • Huang S.M.
        • Mishina Y.M.
        • Liu S.
        • Cheung A.
        • Stegmeier F.
        • Michaud G.A.
        • et al.
        Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.
        Nature. 2009; 461: 614-620
        • Guleria A.
        • Chandna S.
        ATM kinase: much more than a DNA damage responsive protein.
        DNA Repair. 2016; 39: 1-20
        • Jeon O.H.
        • Kim C.
        • Laberge R.M.
        • Demaria M.
        • Rathod S.
        • Vasserot A.P.
        • et al.
        Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment.
        Nat Med. 2017; 23: 775-781
        • Liu Y.
        • Molchanov V.
        • Yang T.
        Enzymatic machinery of ubiquitin and ubiquitin-like modification systems in chondrocyte homeostasis and osteoarthritis.
        Curr Rheumatol Rep. 2021; 23: 62
        • Schipani E.
        • Ryan H.E.
        • Didrickson S.
        • Kobayashi T.
        • Knight M.
        • Johnson R.S.
        Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.
        Genes Dev. 2001; 15: 2865-2876
        • Hu S.
        • Zhang C.
        • Ni L.
        • Huang C.
        • Chen D.
        • Shi K.
        • et al.
        Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy.
        Cell Death Dis. 2020; 11: 481
        • Yazici Y.
        • McAlindon T.E.
        • Gibofsky A.
        • Lane N.E.
        • Clauw D.
        • Jones M.
        • et al.
        Lorecivivint, a novel intraarticular CDC-like kinase 2 and dual-specificity tyrosine phosphorylation-regulated kinase 1A inhibitor and Wnt pathway modulator for the treatment of knee osteoarthritis: a phase II randomized trial.
        Arthritis Rheumatol. 2020; 72: 1694-1706