Advertisement

Patellofemoral contact forces and knee gait mechanics 3 months after ACL reconstruction are associated with cartilage degradation 24 months after surgery

Published:October 13, 2022DOI:https://doi.org/10.1016/j.joca.2022.10.007

      Summary

      Objective

      Evaluate patellofemoral cartilage health, as assessed by quantitative magnetic resonance imaging (qMRI) T2 relaxation times, 24-months after ACL reconstruction (ACLR) and determine if they were associated with patellofemoral contact forces and knee mechanics during gait 3 months after surgery.

      Design

      Thirty individuals completed motion analysis during overground walking at a self-selected speed 3 months after ACLR. An EMG-driven neuromusculoskeletal model was used to determine muscle forces, which were then used in a previously described model to estimate patellofemoral contact forces. Biomechanical variables of interest included peak patellofemoral contact force, peak knee flexion angle and moment, and walking speed. These same participants underwent a sagittal bilateral T2 mapping qMRI scan 24-months after surgery. T2 relaxation times were estimated for both patellar and trochlear cartilage. Paired t-tests were used to compare T2 relaxation times between limbs while Pearson correlations and linear regressions were utilized to assess the association between the biomechanical variables of interest and T2 relaxation times.

      Results

      Prolonged involved limb trochlear T2 relaxation times (vs uninvolved) were present 24-months after surgery, indicating worse cartilage health. No differences were detected in patellar cartilage. Significant negative associations were present within the involved limb for all the biomechanical variables of interest 3 months after ACLR and trochlear T2 relaxation times at 24-months. No associations were found in patellar cartilage or within the uninvolved limb.

      Conclusions

      Altered involved limb trochlear cartilage health is present 24-months after ACLR and may be related to patellofemoral loading and other walking gait mechanics 3 months after surgery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lohmander L.S.
        • Englund P.M.
        • Dahl L.L.
        • Roos E.M.
        The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
        Am J Sport Med. 2007; 35: 1756-1769https://doi.org/10.1177/0363546507307396
        • Barenius B.
        • Ponzer S.
        • Shalabi A.
        • Bujak R.
        • Norlén L.
        • Eriksson K.
        Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial.
        Am J Sport Med. 2014; 42: 1049-1057https://doi.org/10.1177/0363546514526139
        • Roos H.
        • Adalberth T.
        • Dahlberg L.
        • Lohmander L.S.
        Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age.
        Osteoarthr Cartil. 1995; 3: 261-267https://doi.org/10.1016/s1063-4584(05)80017-2
        • Culvenor A.G.
        • Cook J.L.
        • Collins N.J.
        • Crossley K.M.
        Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review.
        Br J Sport Med. 2013; 47: 66-73https://doi.org/10.1136/bjsports-2012-091490
        • Culvenor A.G.
        • Collins N.J.
        • Guermazi A.
        • Cook J.L.
        • Vicenzino B.
        • Whithead T.S.
        • et al.
        Early patellofemoral osteoarthritis features one year after anterior cruciate ligament reconstruction: symptoms and quality of life at three years.
        Arthritis Care Res. 2016; 68: 784-792https://doi.org/10.1002/acr.22761
        • Øiestad B.E.
        • Holm I.
        • Engebretsen L.
        • Aune A.K.
        • Gunderson R.
        • Risberg M.A.
        The prevalence of patellofemoral osteoarthritis 12 years after anterior cruciate ligament reconstruction.
        Knee Surg Sport Traumatol Arthrosc. 2013; 21: 942-949https://doi.org/10.1007/s00167-012-2161-9
        • Argentieri E.C.
        • Burge A.J.
        • Potter H.G.
        Magnetic resonance imaging of articular cartilage within the knee.
        J Knee Surg. 2018; 31: 155-165https://doi.org/10.1055/s-0037-1620233
        • Mosher T.J.
        • Dardzinski B.J.
        Cartilage MRI T2 relaxation time mapping: overview and applications.
        Semin Musculoskelet Radiol. 2004; 8: 355-368https://doi.org/10.1055/s-2004-861764
        • Kim C.W.
        • Hosseini A.
        • Lin L.
        • Wang Y.
        • Torriani M.
        • Gill T.
        • et al.
        Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction.
        J Orthop Transl. 2018; 12: 85-92https://doi.org/10.1016/j.jot.2017.06.002
        • Li G.
        • Li J.S.
        • Torriani M.
        • Hosseini A.
        Short-term contact Kinematic changes and longer-term biochemical changes in the cartilage after ACL reconstruction: a pilot study.
        Ann Biomed Eng. 2018; 46: 1797-1805https://doi.org/10.1007/s10439-018-2079-6
        • Capin J.J.
        • Williams J.R.
        • Neal K.
        • Khandha A.
        • Durkee L.
        • Ito N.
        • et al.
        Slower walking speed is related to early femoral trochlear cartilage degradation after ACL reconstruction.
        J Orthop Res. 2020; 38: 645-652https://doi.org/10.1002/jor.24503
        • Uhlrich S.D.
        • Silder A.
        • Beaupre G.S.
        • Shull P.B.
        • Delp S.L.
        Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction moment peak more than a non-personalized approach.
        J Biomech. 2018; 66: 103-110https://doi.org/10.1016/j.jbiomech.2017.11.003
        • Slater L.V.
        • Hart J.M.
        • Kelly A.R.
        • Kuenze C.M.
        Progressive changes in walking kinematics and kinetics after anterior cruciate ligament injury and reconstruction: a review and meta-analysis.
        J Athl Train. 2017; 52: 847-860
        • Arhos E.K.
        • Capin J.J.
        • Buchanan T.S.
        • Snyder-Mackler L.
        Quadriceps strength symmetry does not modify gait mechanics after anterior cruciate ligament reconstruction, rehabilitation, and return-to-sport training.
        Am J Sport Med. 2021; 49: 417-425https://doi.org/10.1177/0363546520980079
        • Gokeler A.
        • Benjaminse A.
        • van Eck C.F.
        • Webster K.E.
        • Schot L.
        • Otten E.
        Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review.
        Int J Sport Phys Ther. 2013; 8: 441-451
        • Neal K.
        • Williams J.R.
        • Alfayyadh A.
        • Capin J.J.
        • Khandha A.
        • Manal K.
        • et al.
        Knee joint biomechanics during gait improve from 3 to 6 months after anterior cruciate ligament reconstruction.
        J Orthop Res. 2022; https://doi.org/10.1002/jor.25250
        • Capin J.J.
        • Khandha A.
        • Zarzycki R.
        • Arundale A.J.H.
        • Ziegler M.L.
        • Manal K.
        • et al.
        Gait mechanics and tibiofemoral loading in men of the ACL-SPORTS randomized control trial.
        J Orthop Res. 2018; 36: 2364-2372https://doi.org/10.1002/jor.23895
        • Davis-Wilson H.C.
        • Pfeiffer S.J.
        • Johnston C.D.
        • Seeley M.K.
        • Harkey M.S.
        • Blackburn J.T.
        • et al.
        Bilateral gait six and twelve months post-ACL reconstruction compared with controls.
        Med Sci Sport Exerc. 2020; 52: 785-794https://doi.org/10.1249/MSS.0000000000002208
        • Vincent T.L.
        • Wann A.K.T.
        Mechanoadaptation: articular cartilage through thick and thin.
        J Physiol. 2019; 597: 1271-1281https://doi.org/10.1113/JP275451
        • Chu C.R.
        • Andriacchi T.P.
        Dance between biology, mechanics, and structure: a systems-based approach to developing osteoarthritis prevention strategies.
        J Orthop Res. 2015; 33: 939-947https://doi.org/10.1002/jor.22817
        • Williams J.R.
        • Neal K.
        • Alfayyadh A.
        • Khandha A.
        • Manal K.
        • Snyder-Mackler L.
        • et al.
        Patellofemoral contact forces after ACL reconstruction: a longitudinal study.
        J Biomech. 2022; 134https://doi.org/10.1016/j.jbiomech.2022.110993
        • Wellsandt E.
        • Gardinier E.S.
        • Manal K.
        • Axe M.J.
        • Buchanan T.S.
        • Snyder-Mackler L.
        Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury.
        Am J Sport Med. 2016; 44: 143-151https://doi.org/10.1177/0363546515608475
        • Capin J.J.
        • Khandha A.
        • Zarzycki R.
        • Manal K.
        • Buchanan T.S.
        • Snyder-Mackler L.
        Gait mechanics and second ACL rupture: Implications for delaying return-to-sport.
        J Orthop Res. 2017; 35: 1894-1901https://doi.org/10.1002/jor.23476
        • Manal K.
        • Buchanan T.S.
        An electromyogram-driven musculoskeletal model of the knee to predict in vivo joint contact forces during normal and novel gait patterns.
        J Biomech Eng. 2013; 135021014https://doi.org/10.1115/1.4023457
        • Buchanan T.S.
        • Lloyd D.G.
        • Manal K.
        • Besier T.F.
        Neuromusculoskeletal modeling : estimation of muscle forces and joint moments and movements from measurements of neural command.
        J Appl Biomech. 2004; 20: 367-395https://doi.org/10.1123/jab.20.4.367
        • Williams J.R.
        • Neal K.
        • Alfayyadh A.
        • Lennon K.
        • Capin J.J.
        • Khandha A.
        • et al.
        Knee cartilage T2 relaxation times 3 months after ACL reconstruction are associated with knee gait variables linked to knee osteoarthritis.
        J Orthop Res. 2022; 40: 252-259https://doi.org/10.1002/jor.25043
        • Fedorov A.
        • Beichel R.
        • Kalphaty-Cramer J.
        • Finet J.
        • Fillion-Robin J.C.
        • Pujol S.
        • et al.
        3D Slicer as an image computing platform for the quantitative imaging network.
        Magn Reson Imaging. 2012; 30: 1323-1341https://doi.org/10.1016/j.mri.2012.05.001
        • Smith H.E.
        • Mosher T.J.
        • Dardzinski B.J.
        • Collins B.G.
        • Collins C.M.
        • Yang Q.X.
        • et al.
        Spatial variation in cartilage T2 of the knee.
        J Magn Reson Imaging. 2001; 14: 50-55https://doi.org/10.1002/jmri.1150
        • Rothman K.J.
        No adjustments are needed for multiple comparisons.
        Epidemiology. 1990; 1: 43-46
        • Cohen J.
        Statistical Power Analysis for the Behavioral Sciences.
        2nd edn. Routledge, New York1988https://doi.org/10.4324/9780203771587
        • Culvenor A.G.
        • Collins N.J.
        • Guermazi A.
        • Cook J.L.
        • Vicenzino B.
        • Khan K.M.
        • et al.
        Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation.
        Arthritis Rheumatol. 2015; 67: 946-955https://doi.org/10.1002/art.39005
        • Sritharan P.
        • Schache A.G.
        • Culvenor A.G.
        • Perraton L.G.
        • Bryant A.L.
        • Crossley K.M.
        Between-limb differences in patellofemoral joint forces during running at 12 to 24 months after unilateral anterior cruciate ligament reconstruction.
        Am J Sport Med. 2020; 48: 1711-1719https://doi.org/10.1177/0363546520914628
        • Sritharan P.
        • Schache A.G.
        • Culvenor A.G.
        • Perraton L.G.
        • Bryant A.L.
        • Morris H.G.
        • et al.
        Patellofemoral and tibiofemoral joint loading during a single-leg forward hop following ACL reconstruction.
        J Orthop Res. 2022; 40: 159-169https://doi.org/10.1002/jor.25053
        • Sanchez-Adams J.
        • Leddy H.A.
        • McNulty A.L.
        • O'Conor C.J.
        • Guilak F.
        The mechanobiology of articular cartilage: bearing the burden of osteoarthritis.
        Curr Rheumatol Rep. 2014; 16: 1-9https://doi.org/10.1007/s11926-014-0451-6
        • Vanwanseele B.
        • Lucchinetti E.
        • Stüssi E.
        The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions.
        Osteoarthr Cartil. 2002; 10: 408-419https://doi.org/10.1053/joca.2002.0529
        • Andriacchi T.P.
        • Favre J.
        • Erhart-Hledik J.C.
        • Chu C.R.
        A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease.
        Ann Biomed Eng. 2015; 43: 376-387https://doi.org/10.1007/s10439-014-1117-2
        • Andriacchi T.P.
        • Koo S.
        • Scanlan S.F.
        Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee.
        J Bone Jt Surg. 2009; 91: 95-101https://doi.org/10.2106/JBJS.H.01408
        • Scanlan S.F.
        • Favre J.
        • Andriacchi T.P.
        The relationship between peak knee extension at heel-strike of walking and the location of thickest femoral cartilage in ACL reconstructed and healthy contralateral knees.
        J Biomech. 2013; 46: 849-854https://doi.org/10.1016/j.jbiomech.2012.12.026
        • Koo S.
        • Rylander J.H.
        • Andriacchi T.P.
        Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee.
        J Biomech. 2011; 44: 1405-1409https://doi.org/10.1016/j.jbiomech.2010.11.020.Knee
        • Williams A.A.
        • Erhart-Hledik J.C.
        • Asay J.L.
        • Mahtani G.B.
        • Titchenal M.R.
        • Lutz A.M.
        • et al.
        Patient-reported outcomes and knee mechanics correlate with patellofemoral deep cartilage UTE-T2∗ 2 years after anterior cruciate ligament reconstruction.
        Am J Sport Med. 2021; 49: 675-683https://doi.org/10.1177/0363546520982608
        • Capin J.J.
        • Zarzycki R.
        • Arundale A.
        • Cummer K.
        • Snyder-Mackler L.
        Report of the primary outcomes for gait mechanics in men of the ACL-SPORTS trial: secondary prevention with and without perturbation training does not restore gait symmetry in men 1 or 2 years after ACL reconstruction.
        Clin Orthop Relat Res. 2017; 475: 2513-2522https://doi.org/10.1007/s11999-017-5279-8
        • Favre J.
        • Jolles B.M.
        Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions.
        EFORT Open Rev. 2016; 1: 368-374https://doi.org/10.1302/2058-5241.1.000051
        • Teng H.-L.
        • Calixto N.E.
        • Macleod T.D.
        • Nardo L.
        • Link T.M.
        • Majumdar S.
        • et al.
        Associations between patellofemoral joint cartilage T1p and T2 and knee flexion moment and impulse during gait in individuals with and without patellofemoral joint osteoarthritis.
        Osteoarthr Cartil. 2016; 24: 1554-1564https://doi.org/10.1016/j.joca.2016.04.006
        • Blackburn T.
        • Pietrosimone B.
        • Goodwin J.S.
        • Johnston C.
        • Spang J.T.
        Co-activation during gait following anterior cruciate ligament reconstruction.
        Clin Biomech. 2019; 67: 153-159https://doi.org/10.1016/j.clinbiomech.2019.05.010
        • Middleton A.
        • Fritz S.L.
        • Lusardi M.
        Walking speed: the functional vital sign.
        J Aging Phys Act. 2015; 23: 314-322https://doi.org/10.1123/japa.2013-0236
        • Garcia S.A.
        • Brown S.R.
        • Koje M.
        • Krishnan C.
        • Palmieri-Smith R.M.
        Gait asymmetries are exacerbated at faster walking speeds in individuals with acute anterior cruciate ligament reconstruction.
        J Orthop Res. 2022; 40: 219-230https://doi.org/10.1002/jor.25117
        • Knobel R.J.
        • Ito N.
        • Arhos E.K.
        • Capin J.J.
        • Buchanan T.S.
        • Snyder-Mackler L.
        Patients walking faster after anterior cruciate ligament reconstruction have more gait asymmetry.
        Int J Sport Phys Ther. 2021; 16: 169-176https://doi.org/10.26603/001c.18710
        • Chu C.R.
        • Williams A.A.
        • Erhart-Hledik J.C.
        • Titchenal M.R.
        • Qian Y.
        • Andriacchi T.P.
        Visualizing pre-osteoarthritis: integrating MRI UTE-T2∗ with mechanics and biology to combat osteoarthritis—the 2019 Elizabeth Winston Lanier Kappa Delta Award.
        J Orthop Res. 2021; 39: 1585-1595https://doi.org/10.1002/jor.25045
        • Sidharthan S.
        • Yau A.
        • Almeida B.A.
        • Shea K.G.
        • Greditzer H.G.
        • Jones K.J.
        • et al.
        Patterns of articular cartilage thickness in pediatric and adolescent knees: a magnetic resonance imaging–based study.
        Arthrosc Sport Med Rehabil. 2021; 3: e381-e390https://doi.org/10.1016/j.asmr.2020.09.029