Advertisement

Intra-articular kinetics of a cartilage targeting cationic PEGylated protein for applications in drug delivery

Published:October 11, 2022DOI:https://doi.org/10.1016/j.joca.2022.09.010

      Summary

      Objectives

      Cartilage targeting cationic glycoprotein Avidin was PEGylated to synthesize a multi-arm Avidin (mAv) nano-construct with high drug loading content. Here we investigate mAv biodistribution and kinetics over a 7-day period following intra-articular (IA) administration in rat knee joints.

      Methods

      Labeled mAv was injected into healthy rat knees, and joint tissues (articular cartilage, menisci, ligaments, tendons, fat pad) were harvested following sacrifice at 6 h, 1, 4 and 7 days. Its IA biodistribution and retention were measured using fluorescence microscopy. Tissue localization was compared in young vs old rats by immunohistochemistry. mAv chondrotoxicity and immune response were evaluated to determine safe carrier dose limits.

      Results

      mAv penetrated through the full thickness of rat cartilage and other joint tissues within 6 h, remaining detectable within most joint tissues over 7 days. Intra-tissue uptake correlated strongly with tissue GAG concentration, confirming the dominant role of electrostatic interactions between positively charged mAv and the negatively charged aggrecan proteoglycans. mAv was uptaken by chondrocytes and also penetrated the osteocyte lacuno-canalicular system of peri-articular bone in both young and old rats. mAv did not cause cytotoxicity at concentrations up to 300 μM but elicited a dose dependent immunogenic response.

      Conclusions

      mAv's ability to target a variety of joint tissues, chondrocytes, and peri-articular osteocytes without sequestration in synovial fluid makes it a versatile carrier for delivering a wide range of drugs for treating a broad class of musculoskeletal diseases. Drugs can be conjugated using simple aqueous based avidin-biotin reaction, supporting its clinical prospects.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gerwin N.
        • Hops C.
        • Lucke A.
        Intraarticular drug delivery in osteoarthritis.
        Adv Drug Deliv Rev. 2006; 58: 226-242
        • Hiligsmann M.
        • Cooper C.
        • Arden N.
        • Boers M.
        • Branco J.C.
        • Brandi M.L.
        • et al.
        Health economics in the field of osteoarthritis: an expert's consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO).
        Semin Arthritis Rheum. 2013; 43 (Elsevier): 303-313
        • Bajpayee A.G.
        • Grodzinsky A.J.
        Cartilage-targeting drug delivery: can electrostatic interactions help?.
        Nat Rev Rheumatol. 2017; 13: 183-193
        • Hunter D.J.
        • Bierma-Zeinstra S.
        Osteoarthritis.
        Lancet. 2019; 393: 1745-1759
        • He T.
        • Li B.
        • Colombani T.
        • Joshi-Navare K.
        • Mehta S.
        • Kisiday J.
        • et al.
        Hyaluronic acid-based shape-memory cryogel scaffolds for focal cartilage defect repair.
        Tissue Eng Part A. 2021; 27: 748-760
        • Evans C.H.
        • Kraus V.B.
        • Setton L.A.
        Progress in intra-articular therapy.
        Nat Rev Rheumatol. 2014; 10: 11
        • Larsen C.
        • Østergaard J.
        • Larsen S.W.
        • Jensen H.
        • Jacobsen S.
        • Lindegaard C.
        • et al.
        Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders.
        J Pharmaceut Sci. 2008; 97: 4622-4654
        • Mehta S.
        • Akhtar S.
        • Porter R.M.
        • Önnerfjord P.
        • Bajpayee A.G.
        Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture.
        Arthritis Res Ther. 2019; 21: 1-15
        • Mehta S.
        • He T.
        • Bajpayee A.G.
        Recent advances in targeted drug delivery for treatment of osteoarthritis.
        Curr Opin Rheumatol. 2021; 33: 94
        • Vedadghavami A.
        • Hakim B.
        • He T.
        • Bajpayee A.G.
        Cationic peptide carriers enable long-term delivery of insulin-like growth factor-1 to suppress osteoarthritis-induced matrix degradation.
        Arthritis Res Ther. 2022; 24: 172
        • Bajpayee A.G.
        • Scheu M.
        • Grodzinsky A.J.
        • Porter R.M.
        Electrostatic interactions enable rapid penetration, enhanced uptake and retention of intra-articular injected avidin in rat knee joints.
        J Orthop Res. 2014; 32: 1044-1051
        • Bajpayee A.G.
        • Scheu M.
        • Grodzinsky A.J.
        • Porter R.M.
        A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage.
        J Orthop Res. 2015; 33: 660-667
        • Bajpayee A.G.
        • Wong C.R.
        • Bawendi M.G.
        • Frank E.H.
        • Grodzinsky A.J.
        Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis.
        Biomaterials. 2014; 35: 538-549
        • Bajpayee A.G.
        • Rodolfo E.
        • Scheu M.
        • Varady N.H.
        • Yannatos I.A.
        • Brown L.A.
        • et al.
        Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis.
        Eur Cell Mater. 2017; 34: 341
        • He T.
        • Zhang C.
        • Vedadghavami A.
        • Mehta S.
        • Clark H.A.
        • Porter R.M.
        • et al.
        Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs.
        J Control Release. 2020; 318: 109-123
        • Bajpayee A.G.
        • Quadir M.A.
        • Hammond P.T.
        • Grodzinsky A.J.
        Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term.
        Osteoarthritis Cartilage. 2016; 24: 71-81
        • Zhang C.
        • He T.
        • Vedadghavami A.
        • Bajpayee A.G.
        Avidin-biotin technology to synthesize multi-arm nano-construct for drug delivery.
        MethodsX. 2020; 7100882
        • He T.
        • Shaw I.
        • Vedadghavami A.
        • Bajpayee A.G.
        Single-dose intra-cartilage delivery of kartogenin using a cationic multi-arm avidin nanocarrier suppresses cytokine-induced osteoarthritis-related catabolism.
        Cartilage. 2022; 1319476035221093072
        • Vedadghavami A.
        • Mehta S.
        • Bajpayee A.G.
        Characterization of intra-cartilage transport properties of cationic peptide carriers.
        J Vis Exp. 2020; 162e61340
        • Mehta S.
        • Young C.C.
        • Warren M.R.
        • Akhtar S.
        • Shefelbine S.J.
        • Crane J.D.
        • et al.
        Resveratrol and curcumin attenuate ex vivo sugar-induced cartilage glycation, stiffening, senescence, and degeneration.
        Cartilage. 2021; 13 (1947603520988768): 1214S-1228S
        • Rezaeeyazdi M.
        • Colombani T.
        • Memic A.
        • Bencherif S.A.
        Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications.
        Materials. 2018; 11: 1374
        • Volpi C.
        • Fallarino F.
        • Pallotta M.T.
        • Bianchi R.
        • Vacca C.
        • Belladonna M.L.
        • et al.
        High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway.
        Nat Commun. 2013; 4: 1-11
        • Lutz M.B.
        • Kukutsch N.
        • Ogilvie A.L.
        • Rößner S.
        • Koch F.
        • Romani N.
        • et al.
        An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow.
        J Immunol Methods. 1999; 223: 77-92
        • Vedadghavami A.
        • Zhang C.
        • Bajpayee A.G.
        Overcoming negatively charged tissue barriers: drug delivery using cationic peptides and proteins.
        Nano Today. 2020; 34100898
        • Brown S.
        • Kumar S.
        • Sharma B.
        Intra-articular targeting of nanomaterials for the treatment of osteoarthritis.
        Acta Biomater. 2019; 93: 239-257
        • Plesner B.
        • Westh P.
        • Nielsen A.D.
        The effect of GlycoPEGylation on the physical stability of human rFVIIa with increasing calcium chloride concentration.
        Eur J Pharm Biopharm. 2011; 78: 222-228
        • Pfister D.
        • Morbidelli M.
        Process for protein PEGylation.
        J Control Release. 2014; 180: 134-149
        • Park J.-B.
        • Kwon Y.M.
        • Lee T.-Y.
        • Brim R.
        • Ko M.-C.
        • Sunahara R.K.
        • et al.
        PEGylation of bacterial cocaine esterase for protection against protease digestion and immunogenicity.
        J Control Release. 2010; 142: 174-179
        • Vedadghavami A.
        • Wagner E.K.
        • Mehta S.
        • He T.
        • Zhang C.
        • Bajpayee A.G.
        Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues.
        Acta Biomater. 2019; 93: 258-269
        • Vedadghavami A.
        • He T.
        • Zhang C.
        • Amiji S.M.
        • Hakim B.
        • Bajpayee A.G.
        Charge-based drug delivery to cartilage: hydrophobic and not electrostatic interactions are the dominant cause of competitive binding of cationic carriers in synovial fluid.
        Acta Biomater. 2022; 151: 278-289https://doi.org/10.1016/j.actbio.2022.08.010
        • Loeser R.F.
        • Goldring S.R.
        • Scanzello C.R.
        • Goldring M.B.
        Osteoarthritis: a disease of the joint as an organ.
        Arthritis Rheum. 2012; 64: 1697
        • Johnson K.
        • Zhu S.
        • Tremblay M.S.
        • Payette J.N.
        • Wang J.
        • Bouchez L.C.
        • et al.
        A stem cell–based approach to cartilage repair.
        Science. 2012; 336: 717-721
        • Pi Y.
        • Zhang X.
        • Shao Z.
        • Zhao F.
        • Hu X.
        • Ao Y.
        Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice.
        Gene Ther. 2015; 22: 439-448
        • Bailey K.N.
        • Nguyen J.
        • Yee C.S.
        • Dole N.S.
        • Dang A.
        • Alliston T.
        Mechanosensitive control of articular cartilage and subchondral bone homeostasis in mice requires osteocytic transforming growth factor β signaling.
        Arthritis Rheumatol. 2021; 73: 414-425
        • Wang X.
        • Li Z.
        • Wang C.
        • Bai H.
        • Wang Z.
        • Liu Y.
        • et al.
        Enlightenment of growth plate regeneration based on cartilage repair theory: a review.
        Front Bioeng Biotechnol. 2021; 9: 462
        • Kronenberg H.M.
        Developmental regulation of the growth plate.
        Nature. 2003; 423: 332-336
        • Warren M.R.
        • Vedadghavami A.
        • Bhagavatula S.
        • Bajpayee A.G.
        Effects of polycationic drug carriers on the electromechanical and swelling properties of cartilage.
        Biophys J. 2022; 121: 3542-3561https://doi.org/10.1016/j.bpj.2022.06.024
        • Warren M.R.
        • Bajpayee A.G.
        Modeling electrostatic charge shielding induced by cationic drug carriers in articular cartilage using Donnan osmotic theory.
        Bioelectricity. 2021; 0https://doi.org/10.1089/bioe.2021.0026
        • Young C.C.
        • Vedadghavami A.
        • Bajpayee A.G.
        Bioelectricity for drug delivery: the promise of cationic therapeutics.
        Bioelectricity. 2020; 2: 68-81
        • Veronese F.M.
        • Mero A.
        The impact of PEGylation on biological therapies.
        BioDrugs. 2008; 22: 315-329
        • Roseng L.
        • Tolleshaug H.
        • Berg T.
        Uptake, intracellular transport, and degradation of polyethylene glycol-modified asialofetuin in hepatocytes.
        J Biol Chem. 1992; 267: 22987-22993
        • Shi J.
        • Liang Q.
        • Zuscik M.
        • Shen J.
        • Chen D.
        • Xu H.
        • et al.
        Distribution and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice.
        Arthritis Rheumatol. 2014; 66: 657-666
        • Doan T.N.
        • Bernard F.C.
        • McKinney J.M.
        • Dixon J.B.
        • Willett N.J.
        Endothelin-1 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular injection into the rat knee.
        Acta Biomater. 2019; 93: 270-281
        • Partain B.D.
        • Unni M.
        • Rinaldi C.
        • Allen K.D.
        The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees.
        J Control Release. 2020; 321: 259-271
        • Mwangi T.K.
        • Berke I.M.
        • Nieves E.H.
        • Bell R.D.
        • Adams S.B.
        • Setton L.A.
        Intra-articular clearance of labeled dextrans from naive and arthritic rat knee joints.
        J Control Release. 2018; 283: 76-83
        • Wagner E.K.
        • Vedadghavami A.
        • Jacobsen T.D.
        • Goel S.A.
        • Chahine N.O.
        • Bajpayee A.G.
        Avidin grafted dextran nanostructure enables a month-long intra-discal retention.
        Sci Rep. 2020; 10: 1-14