Advertisement

Disentangling the molecular interplays between subchondral bone and articular cartilage in estrogen deficiency-induced osteoarthritis

  • Santos Castañeda
    Correspondence
    Address correspondence and reprint requests to: Santos Castañeda, MD, PhD Rheumatology Unit, Hospital de La Princesa, IIS-IP, c/Diego de León 62; 28006-Madrid, Spain Universidad Autónoma de Madrid (UAM), c/Arzobispo Morcillo s/n, Madrid, Spain. Tel.: (34) 915 202 200x2473.
    Affiliations
    Rheumatology Unit, Hospital Universitario de La Princesa, IIS-Princesa, Madrid, Spain

    Cátedra UAM-ROCHE, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
    Search for articles by this author
  • Esther F. Vicente-Rabaneda
    Affiliations
    Rheumatology Unit, Hospital Universitario de La Princesa, IIS-Princesa, Madrid, Spain
    Search for articles by this author
Published:September 27, 2022DOI:https://doi.org/10.1016/j.joca.2022.09.006
      Intensive exchange of nutrients and biomolecules occurs between the articular cartilage, the calcified cartilage, and the subchondral bone to create a functional unit that also provides biomechanical support to the joint
      • Goldring S.R.
      • Goldring M.B.
      Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk.
      . Systemic factors such as sex hormones, particularly estrogens, influence the homeostasis of the osteochondral unit
      • Roman-Blas J.A.
      • Castañeda S.
      • Largo R.
      • Herrero-Beaumont G.
      Osteoarthritis associated with estrogen deficiency.
      . Relevant evidence from experimental in vivo studies and, to a lesser extent, from human studies indicate that estrogen deficiency may induce or worsen osteoarthritis (OA) changes in joint tissues
      • Castañeda S.
      • Largo R.
      • Calvo E.
      • Bellido M.
      • Gómez-Vaquero C.
      • Herrero-Beaumont G.
      Effects of estrogen deficiency and low bone mineral density on healthy knee cartilage in rabbits.
      • Bellido M.
      • Lugo L.
      • Roman-Blas J.A.
      • Castañeda S.
      • Caeiro J.R.
      • Dapia S.
      • et al.
      Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis.
      • Sniekers Y.H.
      • Weinans H.
      • Bierma-Zeinstra S.M.
      • van Leeuwen J.P.
      • van Osch G.J.
      Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment — a systematic approach.
      .

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldring S.R.
        • Goldring M.B.
        Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk.
        Nat Rev Rheumatol. 2016; 12: 632-644https://doi.org/10.1038/nrrheum.2016.148
        • Roman-Blas J.A.
        • Castañeda S.
        • Largo R.
        • Herrero-Beaumont G.
        Osteoarthritis associated with estrogen deficiency.
        Arthritis Res Ther. 2009; 11: 241https://doi.org/10.1186/ar2791
        • Castañeda S.
        • Largo R.
        • Calvo E.
        • Bellido M.
        • Gómez-Vaquero C.
        • Herrero-Beaumont G.
        Effects of estrogen deficiency and low bone mineral density on healthy knee cartilage in rabbits.
        J Orthop Res. 2010; 28: 812-818https://doi.org/10.1002/jor.21054
        • Bellido M.
        • Lugo L.
        • Roman-Blas J.A.
        • Castañeda S.
        • Caeiro J.R.
        • Dapia S.
        • et al.
        Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis.
        Arthritis Res Ther. 2010; 12: R152https://doi.org/10.1186/ar3103
        • Sniekers Y.H.
        • Weinans H.
        • Bierma-Zeinstra S.M.
        • van Leeuwen J.P.
        • van Osch G.J.
        Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment — a systematic approach.
        Osteoarthritis Cartilage. 2008; 16: 533-541https://doi.org/10.1016/j.joca.2008.01.002
        • Ziemian S.N.
        • Ayobami O.O.
        • Rooney A.M.
        • Kelly N.H.
        • Holyoak D.T.
        • Ross F.P.
        • et al.
        Low bone mass resulting from impaired estrogen signaling in bone increases severity of load-induced osteoarthritis in female mice.
        Bone. 2021; 152: 116071https://doi.org/10.1016/j.bone.2021.116071
        • Castaño-Betancourt M.C.
        • Rivadeneira F.
        • Bierma-Zeinstra S.
        • Kerkhof H.J.
        • Hofman A.
        • Uitterlinden A.G.
        • et al.
        Bone parameters across different types of hip osteoarthritis and their relationship to osteoporotic fracture risk.
        Arthritis Rheum. 2013; 65: 693-700https://doi.org/10.1002/art.37792
        • Jiang A.
        • Gao S.
        • Zhao Z.
        • Tan Q.
        • Sun S.
        • Song C.
        • et al.
        Phenotype changes of subchondral plate osteoblasts based on a rat model of ovariectomy-induced osteoarthritis.
        Ann Transl Med. 2020; 8: 476https://doi.org/10.21037/atm.2020.03.93
        • Sanchez C.
        • Mazzucchelli G.
        • Lambert C.
        • Comblain F.
        • DePauw E.
        • Henrotin Y.
        Comparison of secretome from osteoblasts derived from sclerotic versus non-sclerotic subchondral bone in OA: a pilot study.
        PLoS One. 2018; 13: e0194591https://doi.org/10.1371/journal.pone.0194591
        • Couchourel D.
        • Aubry I.
        • Delalandre A.
        • Lavigne M.
        • Martel-Pelletier J.
        • Pelletier J.P.
        • et al.
        Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production.
        Arthritis Rheum. 2009; 60: 1438-1450https://doi.org/10.1002/art.24489
        • Jiang A.
        • Xu P.
        • Sun S.
        • Yang Z.
        • Zhao Z.
        • Tan Q.
        • et al.
        Increased SPARC release from subchondral osteoblasts promotes articular chondrocyte degeneration under estrogen withdrawal.
        Osteoarthritis Cartilage. 2022;
        • Nakamura S.
        • Kamihagi K.
        • Satakeda H.
        • Katayama M.
        • Pan H.
        • Okamoto H.
        • et al.
        Enhancement of SPARC (osteonectin) synthesis in arthritic cartilage. Increased levels in synovial fluids from patients with rheumatoid arthritis and regulation by growth factors and cytokines in chondrocyte cultures.
        Arthritis Rheum. 1996; 39: 539-551https://doi.org/10.1002/art.1780390402
        • Raines E.W.
        • Lane T.F.
        • Iruela-Arispe M.L.
        • Ross R.
        • Sage E.H.
        The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors.
        Proc Natl Acad Sci U S A. 1992; 89: 1281-1285https://doi.org/10.1073/pnas.89.4.1281
        • Herrero-Beaumont G.
        • Roman-Blas J.A.
        • Castañeda S.
        • Jimenez S.A.
        Primary osteoarthritis no longer primary: three subsets with distinct etiological, clinical, and therapeutic charac-teristics.
        Semin Arthritis Rheum. 2009; 39: 71-80https://doi.org/10.1016/j.semarthrit.2009.03.006
        • Krock E.
        • Millecamps M.
        • Currie J.B.
        • Stone L.S.
        • Haglund L.
        Low back pain and disc degeneration are decreased following chronic toll-like receptor 4 inhibition in a mouse model.
        Osteoarthritis Cartilage. 2018; 26: 1236-1246https://doi.org/10.1016/j.joca.2018.06.002