Advertisement

Osteoarthritis year in review 2022: biology

  • S. Han
    Correspondence
    Address correspondence and reprint requests to: S. Han. Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, 807, Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea. Tel.: 82-53-200-3233; fax: 82-53-940-7524.
    Affiliations
    Laboratory for for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
    Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
    Search for articles by this author
Published:September 19, 2022DOI:https://doi.org/10.1016/j.joca.2022.09.003

      Summary

      The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed search by personal opinion. These papers were classified by their molecular mechanisms, and it was largely divided into the intracellular signaling mechanisms and the inter-compartment interaction in chondrocyte homeostasis and OA progression. The intracellular signaling mechanisms involving OA progression included (1) Piezo1/transient receptor potential channels of the vanilloid subtype (TRPV) 4-mediated calcium signaling, (2) mechanical load–F-box and WD repeat domain containing 7 (FBXW7) in chondrocyte senescence, (3) mechanical loading-primary cilia-hedgehog signaling, (4) low grade inflammation by toll-like receptor (TLR)-CD14-lipopolysaccharide-binding protein (LBP) complex and inhibitor of NF-κB kinase (IKK) β–nuclear factor kappa B (NF-κB) signaling, (5) selenium pathway and reactive oxygen species (ROS) production, (6) G protein–coupled receptor (GPCR) and cyclic adenosine monophosphate (cAMP) signaling, (7) peroxisome proliferator-activated receptor α (PPARα)–acyl-CoA thioesterase 12 (ACOT12)-mediated de novo lipogenesis and (8) hypoxia–disruptor of telomeric silencing 1-like (DOT1L)–H3-lysine 79 (H3K79) methylation pathway. The studies on inter-compartment or intercellular interaction in OA progression included the following subjects; (1) the anabolic role of lubricin, glycoprotein from superficial zone cells, (2) osteoclast–chondrocyte interaction via exosomal miRNA and sphingosine 1-phosphate (S1P), (3) senescent fibroblast-like synoviocyte and chondrocyte interaction, (4) synovial macrophage and chondrocyte interaction through Flightless I, (5) αV integrin-mediated transforming growth factor beta (TGFβ) activation by mechanical loading, and (6) osteocytic TGFβ in subchondral bone thickening. Despite the disastrous Covid-19 pandemic, many outstanding studies have expanded the boundary of OA biology. They provide both critical insight into the pathophysiology as well as clues for the treatment of OA.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Neefjes M.
        • van Caam A.P.M.
        • van der Kraan P.M.
        Transcription factors in cartilage homeostasis and osteoarthritis.
        Biology (Basel). 2020; 9: 290
        • Andolfo I.
        • Alper S.L.
        • Iolascon A.
        Nobel prize in physiology or medicine 2021, receptors for temperature and touch: implications for hematology.
        Am J Hematol. 2022; 97: 168-170
        • Swain S.M.
        • Liddle R.A.
        Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress.
        J Biol Chem. 2021; 296100171
        • Swain S.M.
        • Romac J.M.
        • Shahid R.A.
        • Pandol S.J.
        • Liedtke W.
        • Vigna S.R.
        • et al.
        TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation.
        J Clin Invest. 2020; 130: 2527-2541
        • Lee W.
        • Nims R.J.
        • Savadipour A.
        • Zhang Q.
        • Leddy H.A.
        • Liu F.
        • et al.
        Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis.
        Proc Natl Acad Sci U S A. 2021; 118e2001611118
        • Agarwal P.
        • Lee H.P.
        • Smeriglio P.
        • Grandi F.
        • Goodman S.
        • Chaudhuri O.
        • et al.
        A dysfunctional TRPV4-GSK3beta pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity.
        Nat Biomed Eng. 2021; 5: 1472-1484
        • Hattori K.
        • Takahashi N.
        • Terabe K.
        • Ohashi Y.
        • Kishimoto K.
        • Yokota Y.
        • et al.
        Activation of transient receptor potential vanilloid 4 protects articular cartilage against inflammatory responses via CaMKK/AMPK/NF-kappaB signaling pathway.
        Sci Rep. 2021; 1115508
        • Marcu K.B.
        • Otero M.
        • Olivotto E.
        • Borzi R.M.
        • Goldring M.B.
        NF-kappaB signaling: multiple angles to target OA.
        Curr Drug Targets. 2010; 11: 599-613
        • Won Y.
        • Yang J.I.
        • Park S.
        • Chun J.S.
        Lipopolysaccharide binding protein and CD14, cofactors of toll-like receptors, are essential for low-grade inflammation-induced exacerbation of cartilage damage in mouse models of posttraumatic osteoarthritis.
        Arthritis Rheumatol. 2021; 73: 1451-1460
        • Catheline S.E.
        • Bell R.D.
        • Oluoch L.S.
        • James M.N.
        • Escalera-Rivera K.
        • Maynard R.D.
        • et al.
        IKKbeta-NF-kappaB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice.
        Sci Signal. 2021; 14eabf3535
        • Houtman E.
        • Tuerlings M.
        • Riechelman J.
        • Suchiman E.
        • van der Wal R.J.P.
        • Nelissen R.
        • et al.
        Elucidating mechano-pathology of osteoarthritis: transcriptome-wide differences in mechanically stressed aged human cartilage explants.
        Arthritis Res Ther. 2021; 23: 215
        • Zhang H.
        • Shao Y.
        • Yao Z.
        • Liu L.
        • Zhang H.
        • Yin J.
        • et al.
        Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7.
        Ann Rheum Dis. 2022; 81: 676-686
        • Bastepe M.
        • Weinstein L.S.
        • Ogata N.
        • Kawaguchi H.
        • Juppner H.
        • Kronenberg H.M.
        • et al.
        Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo.
        Proc Natl Acad Sci USA. 2004; 101: 14794-14799
        • Watari K.
        • Nakaya M.
        • Kurose H.
        Multiple functions of G protein-coupled receptor kinases.
        J Mol Signal. 2014; 9: 1
        • Carlson E.L.
        • Karuppagounder V.
        • Pinamont W.J.
        • Yoshioka N.K.
        • Ahmad A.
        • Schott E.M.
        • et al.
        Paroxetine-mediated GRK2 inhibition is a disease-modifying treatment for osteoarthritis.
        Sci Transl Med. 2021; 13: eaau8491
        • Ho E.K.
        • Stearns T.
        Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling.
        Development. 2021; 148: dev195552
        • Chang C.F.
        • Ramaswamy G.
        • Serra R.
        Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis.
        Osteoarthritis Cartilage. 2012; 20: 152-161
        • Coveney C.R.
        • Zhu L.
        • Miotla-Zarebska J.
        • Stott B.
        • Parisi I.
        • Batchelor V.
        • et al.
        Role of ciliary protein intraflagellar transport protein 88 in the regulation of cartilage thickness and osteoarthritis development in mice.
        Arthritis Rheumatol. 2022; 74: 49-59
        • Rockel J.S.
        • Yu C.
        • Whetstone H.
        • Craft A.M.
        • Reilly K.
        • Ma H.
        • et al.
        Hedgehog inhibits beta-catenin activity in synovial joint development and osteoarthritis.
        J Clin Invest. 2016; 126: 1649-1663
        • Haycraft C.J.
        • Banizs B.
        • Aydin-Son Y.
        • Zhang Q.
        • Michaud E.J.
        • Yoder B.K.
        Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function.
        PLoS Genet. 2005; 1: e53
        • Stockwell R.A.
        Lipid content of human costal and articular cartilage.
        Ann Rheum Dis. 1967; 26: 481-486
        • Ghadially F.N.
        • Mehta P.N.
        • Kirkaldy-Willis W.H.
        Ultrastructure of articular cartilage in experimentally produced lipoarthrosis.
        J Bone Joint Surg Am. 1970; 52: 1147-1158
        • Park S.
        • Baek I.J.
        • Ryu J.H.
        • Chun C.H.
        • Jin E.J.
        PPARalpha-ACOT12 axis is responsible for maintaining cartilage homeostasis through modulating de novo lipogenesis.
        Nat Commun. 2022; 13: 3
        • Lu M.
        • Zhu W.W.
        • Wang X.
        • Tang J.J.
        • Zhang K.L.
        • Yu G.Y.
        • et al.
        ACOT12-Dependent alteration of acetyl-CoA drives hepatocellular carcinoma metastasis by epigenetic induction of epithelial-mesenchymal transition.
        Cell Metabol. 2019; 29 (e5): 886-900
        • Li G.
        • Cheng T.
        • Yu X.
        The impact of trace elements on osteoarthritis.
        Front Med (Lausanne). 2021; 8771297
        • Kang D.
        • Lee J.
        • Jung J.
        • Carlson B.A.
        • Chang M.J.
        • Chang C.B.
        • et al.
        Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis.
        Nat Commun. 2022; 13: 779
        • Lund-Olesen K.
        Oxygen tension in synovial fluids.
        Arthritis Rheum. 1970; 13: 769-776
        • Markway B.D.
        • Cho H.
        • Johnstone B.
        Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes.
        Arthritis Res Ther. 2013; 15: R92
        • De Roover A.
        • Nunez A.E.
        • Cornelis F.M.
        • Cherifi C.
        • Casas-Fraile L.
        • Sermon A.
        • et al.
        Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis.
        JCI Insight. 2021; 6: e150451
        • Monteagudo S.
        • Cornelis F.M.F.
        • Aznar-Lopez C.
        • Yibmantasiri P.
        • Guns L.A.
        • Carmeliet P.
        • et al.
        DOT1L safeguards cartilage homeostasis and protects against osteoarthritis.
        Nat Commun. 2017; 815889
        • Jeffries M.A.
        • Donica M.
        • Baker L.W.
        • Stevenson M.E.
        • Annan A.C.
        • Humphrey M.B.
        • et al.
        Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage.
        Arthritis Rheumatol. 2014; 66: 2804-2815
        • Fernandez-Tajes J.
        • Soto-Hermida A.
        • Vazquez-Mosquera M.E.
        • Cortes-Pereira E.
        • Mosquera A.
        • Fernandez-Moreno M.
        • et al.
        Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients.
        Ann Rheum Dis. 2014; 73: 668-677
        • Yu X.H.
        • Yang Y.Q.
        • Cao R.R.
        • Bo L.
        • Lei S.F.
        The causal role of gut microbiota in development of osteoarthritis.
        Osteoarthritis Cartilage. 2021; 29: 1741-1750
        • Mansfield J.C.
        • Bell J.S.
        • Winlove C.P.
        The micromechanics of the superficial zone of articular cartilage.
        Osteoarthritis Cartilage. 2015; 23: 1806-1816
        • Eschweiler J.
        • Horn N.
        • Rath B.
        • Betsch M.
        • Baroncini A.
        • Tingart M.
        • et al.
        The biomechanics of cartilage-an overview.
        Life (Basel). 2021; 11: 302
        • Rhee D.K.
        • Marcelino J.
        • Baker M.
        • Gong Y.
        • Smits P.
        • Lefebvre V.
        • et al.
        The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth.
        J Clin Invest. 2005; 115: 622-631
        • Waller K.A.
        • Zhang L.X.
        • Elsaid K.A.
        • Fleming B.C.
        • Warman M.L.
        • Jay G.D.
        Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis.
        Proc Natl Acad Sci USA. 2013; 110: 5852-5857
        • Karamchedu N.P.
        • Tofte J.N.
        • Waller K.A.
        • Zhang L.X.
        • Patel T.K.
        • Jay G.D.
        Superficial zone cellularity is deficient in mice lacking lubricin: a stereoscopic analysis.
        Arthritis Res Ther. 2016; 18: 64
        • Ruan M.Z.
        • Erez A.
        • Guse K.
        • Dawson B.
        • Bertin T.
        • Chen Y.
        • et al.
        Proteoglycan 4 expression protects against the development of osteoarthritis.
        Sci Transl Med. 2013; 5: 176ra34
        • Maenohara Y.
        • Chijimatsu R.
        • Tachibana N.
        • Uehara K.
        • Xuan F.
        • Mori D.
        • et al.
        Lubricin contributes to homeostasis of articular cartilage by modulating differentiation of superficial zone cells.
        J Bone Miner Res. 2021; 36: 792-802
        • Xie R.
        • Yao H.
        • Mao A.S.
        • Zhu Y.
        • Qi D.
        • Jia Y.
        • et al.
        Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis.
        Nat Biomed Eng. 2021; 5: 1189-1201
        • Hu W.
        • Chen Y.
        • Dou C.
        • Dong S.
        Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis.
        Ann Rheum Dis. 2021; 80: 413-422
        • Liu J.
        • Wu X.
        • Lu J.
        • Huang G.
        • Dang L.
        • Zhang H.
        • et al.
        Exosomal transfer of osteoclast-derived miRNAs to chondrocytes contributes to osteoarthritis progression.
        Nature Aging. 2021; 1: 368-384
        • Cherifi C.
        • Latourte A.
        • Vettorazzi S.
        • Tuckermann J.
        • Provot S.
        • Ea H.K.
        • et al.
        Inhibition of sphingosine 1-phosphate protects mice against chondrocyte catabolism and osteoarthritis.
        Osteoarthritis Cartilage. 2021; 29: 1335-1345
        • Ito Y.
        • Matsuzaki T.
        • Ayabe F.
        • Mokuda S.
        • Kurimoto R.
        • Matsushima T.
        • et al.
        Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2alpha expression and coordinately regulate cartilage homeostasis.
        Nat Commun. 2021; 12: 4148
        • Benito M.J.
        • Veale D.J.
        • FitzGerald O.
        • van den Berg W.B.
        • Bresnihan B.
        Synovial tissue inflammation in early and late osteoarthritis.
        Ann Rheum Dis. 2005; 64: 1263-1267
        • Han D.
        • Fang Y.
        • Tan X.
        • Jiang H.
        • Gong X.
        • Wang X.
        • et al.
        The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: an update.
        J Cell Mol Med. 2020; 24: 9518-9532
        • Chen X.
        • Gong W.
        • Shao X.
        • Shi T.
        • Zhang L.
        • Dong J.
        • et al.
        METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression.
        Ann Rheum Dis. 2022; 81: 87-99
        • Bhattaram P.
        • Chandrasekharan U.
        The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases.
        Semin Cell Dev Biol. 2017; 62: 86-93
        • Ebata T.
        • Terkawi M.A.
        • Hamasaki M.
        • Matsumae G.
        • Onodera T.
        • Aly M.K.
        • et al.
        Flightless I is a catabolic factor of chondrocytes that promotes hypertrophy and cartilage degeneration in osteoarthritis.
        iScience. 2021; 24102643
        • Henderson N.C.
        • Arnold T.D.
        • Katamura Y.
        • Giacomini M.M.
        • Rodriguez J.D.
        • McCarty J.H.
        • et al.
        Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs.
        Nat Med. 2013; 19: 1617-1624
        • Zhen G.
        • Guo Q.
        • Li Y.
        • Wu C.
        • Zhu S.
        • Wang R.
        • et al.
        Mechanical stress determines the configuration of TGFbeta activation in articular cartilage.
        Nat Commun. 2021; 12: 1706
        • Bailey K.N.
        • Nguyen J.
        • Yee C.S.
        • Dole N.S.
        • Dang A.
        • Alliston T.
        Mechanosensitive control of articular cartilage and subchondral bone homeostasis in mice requires osteocytic transforming growth factor beta signaling.
        Arthritis Rheumatol. 2021; 73: 414-425
        • Conaghan P.G.
        • Bowes M.A.
        • Kingsbury S.R.
        • Brett A.
        • Guillard G.
        • Rizoska B.
        • et al.
        Disease-modifying effects of a novel cathepsin K inhibitor in osteoarthritis: a randomized controlled trial.
        Ann Intern Med. 2020; 172: 86-95