Advertisement

Multi-vendor multi-site quantitative MRI analysis of cartilage degeneration 10 Years after anterior cruciate ligament reconstruction: MOON-MRI protocol and preliminary results

Published:August 29, 2022DOI:https://doi.org/10.1016/j.joca.2022.08.006

      Summary

      Objective

      To describe the protocol of a multi-vendor, multi-site quantitative MRI study for knee post-traumatic osteoarthritis (PTOA), and to present preliminary results of cartilage degeneration using MR T and T2 imaging 10 years after anterior cruciate ligament reconstruction (ACLR).

      Design

      This study involves three sites and two MR platforms. The patients are from a nested cohort (termed as Onsite cohort) within the Multicenter Orthopaedic Outcomes Network (MOON) cohort 10 years after ACLR. Phantoms and controls were scanned for evaluating reproducibility. Cartilage was automatically segmented, and T and T2 were compared between operated, contralateral, and control knees.

      Results

      Sixty-eight ACL-reconstructed patients and 20 healthy controls were included. In phantoms, the intra-site coefficients of variation (CVs) of repeated scans ranged 1.8–2.1% for T and 1.3–1.7% for T2. The inter-site CVs ranged 1.6–2.1% for T and 1.1–1.4% for T2. In human subjects, the intra-site scan/rescan CVs ranged 2.2–3.5% for T and 2.6–4.9% for T2 for the six major compartments. In patients, operated knees showed significantly higher T and T2 values mainly in medial femoral condyle, medial tibia and trochlear cartilage compared with contralateral knees, and showed significantly higer T and T2 values in all six compartments compared to healthy control knees. The patient contralateral knees showed higher T and T2 values mainly in the lateral femoral condyle, lateral tibia, trochlear, and patellar cartilage compared to healthy control knees.

      Conclusion

      A platform and workflow with rigorous quality control has been established for a multi-vendor multi-site quantitative MRI study in evaluating PTOA 10 years after ACLR. Our preliminary report suggests significant cartilage matrix changes in both operated and contralateral knees compared with healthy control knees.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Musahl V.
        • Karlsson J.
        Anterior cruciate ligament tear.
        N Engl J Med. 2019; 380: 2341-2348
        • Diermeier T.A.
        • Rothrauff B.B.
        • Engebretsen L.
        • Lynch A.
        • Svantesson E.
        • Hamrin Senorski E.A.
        • et al.
        Treatment after ACL injury: panther symposium ACL treatment consensus group.
        Br J Sports Med. 2021; 55: 14-22
        • Ajuied A.
        • Wong F.
        • Smith C.
        • Norris M.
        • Earnshaw P.
        • Back D.
        • et al.
        Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis.
        Am J Sports Med. 2014; 42: 2242-2252
        • Jones M.H.
        • Spindler K.P.
        Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction: data from the MOON cohort.
        J Orthop Res. 2017; 35: 1366-1374
        • Lohmander L.S.
        • Englund P.M.
        • Dahl L.L.
        • Roos E.M.
        The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
        Am J Sports Med. 2007; 35: 1756-1769
        • Chen T.
        • Wang S.
        • Li Y.
        • Ai C.
        • Jiang F.
        • Chen S.
        Radiographic osteoarthritis prevalence over ten years after anterior cruciate ligament reconstruction.
        Int J Sports Med. 2019; 40: 683-695
        • Faber K.J.
        • Dill J.R.
        • Amendola A.
        • Thain L.
        • Spouge A.
        • Fowler P.J.
        Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic resonance imaging follow-up study.
        Am J Sports Med. 1999; 27: 489-494
        • Frobell R.B.
        Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects.
        J Bone Joint Surg Am. 2011; 93: 1096-1103
        • Eckstein F.
        • Wirth W.
        • Lohmander L.S.
        • Hudelmaier M.I.
        • Frobell R.B.
        Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament.
        Arthritis Rheumatol. 2015; 67: 152-161
        • Potter H.G.
        • Jain S.K.
        • Ma Y.
        • Black B.R.
        • Fung S.
        • Lyman S.
        Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up.
        Am J Sports Med. 2012; 40: 276-285
        • Roemer F.W.
        • Demehri S.
        • Omoumi P.
        • Link T.M.
        • Kijowski R.
        • Saarakkala S.
        • et al.
        State of the art: imaging of osteoarthritis-revisited 2020.
        Radiology. 2020; 296: 5-21
        • Li X.
        • Majumdar S.
        Quantitative MRI of articular cartilage and its clinical applications.
        J Magn Reson Imag. 2013; 38: 991-1008
        • Li X.
        • Kuo D.
        • Theologis A.
        • Carballido-Gamio J.
        • Stehling C.
        • Link T.M.
        • et al.
        Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2--initial experience with 1-year follow-up.
        Radiology. 2011; 258: 505-514
        • Shimizu T.
        • Samaan M.A.
        • Tanaka M.S.
        • Pedoia V.
        • Souza R.B.
        • Li X.
        • et al.
        Abnormal biomechanics at 6 Months are associated with cartilage degeneration at 3 Years after anterior cruciate ligament reconstruction.
        Arthroscopy. 2019; 35: 511-520
        • Boling M.C.
        • Dupell M.
        • Pfeiffer S.J.
        • Wallace K.
        • Lalush D.
        • Spang J.T.
        • et al.
        In vivo compositional changes in the articular cartilage of the patellofemoral joint following anterior cruciate ligament reconstruction.
        Arthritis Care Res. 2021; 74: 1172-1178
        • Kim C.W.
        • Hosseini A.
        • Lin L.
        • Wang Y.
        • Torriani M.
        • Gill T.
        • et al.
        Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction.
        J Orthop Translat. 2018; 12: 85-92
        • Spindler K.P.
        • Huston L.J.
        • Wright R.W.
        • Kaeding C.C.
        • Marx R.G.
        • Amendola A.
        • et al.
        The prognosis and predictors of sports function and activity at minimum 6 years after anterior cruciate ligament reconstruction: a population cohort study.
        Am J Sports Med. 2011; 39: 348-359
        • Kaeding C.C.
        • Pedroza A.D.
        • Reinke E.K.
        • Huston L.J.
        • Consortium M.
        • Spindler K.P.
        Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort.
        Am J Sports Med. 2015; 43: 1583-1590
        • Group M.K.
        • Spindler K.P.
        • Huston L.J.
        • Chagin K.M.
        • Kattan M.W.
        • Reinke E.K.
        • et al.
        Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: a MOON longitudinal prospective cohort study.
        Am J Sports Med. 2018; 46: 815-825
        • Jones M.H.
        • Spindler K.P.
        • Fleming B.C.
        • Duryea J.
        • Obuchowski N.A.
        • Scaramuzza E.A.
        • et al.
        Meniscus treatment and age associated with narrower radiographic joint space width 2-3 years after ACL reconstruction: data from the MOON onsite cohort.
        Osteoarthritis Cartilage. 2015; 23: 581-588
        • Jones M.H.
        • Group M.K.
        • Spindler K.P.
        • Andrish J.T.
        • Cox C.L.
        • Dunn W.R.
        • et al.
        Differences in the lateral compartment joint space width after anterior cruciate ligament reconstruction: data from the MOON onsite cohort.
        Am J Sports Med. 2018; 46: 876-882
        • Wright R.W.
        • Haas A.K.
        • Anderson J.
        • Calabrese G.
        • Cavanaugh J.
        • Hewett T.E.
        • et al.
        Anterior cruciate ligament reconstruction rehabilitation: MOON guidelines.
        Sport Health. 2015; 7: 239-243
        • Kim J.
        • Mamoto K.
        • Lartey R.
        • Xu K.
        • Nakamura K.
        • Shin W.
        • et al.
        Multi-vendor multi-site T1rho and T2 quantification of knee cartilage.
        Osteoarthritis Cartilage. 2020; 28: 1539-1550
        • Klein S.
        • Staring M.
        • Murphy K.
        • Viergever M.A.
        • Pluim J.P.
        elastix: a toolbox for intensity-based medical image registration.
        IEEE Trans Med Imag. 2010; 29: 196-205
        • Gaj S.
        • Yang M.
        • Nakamura K.
        • Li X.
        Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
        Magn Reson Med. 2020; 84: 437-449
        • Hunter D.J.
        • Guermazi A.
        • Lo G.H.
        • Grainger A.J.
        • Conaghan P.G.
        • Boudreau R.M.
        • et al.
        Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score).
        Osteoarthritis Cartilage. 2011; 19: 990-1002
        • MacKay J.W.
        • Low S.B.L.
        • Smith T.O.
        • Toms A.P.
        • McCaskie A.W.
        • Gilbert F.J.
        Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis.
        Osteoarthritis Cartilage. 2018; 26: 1140-1152
        • Atkinson H.F.
        • Birmingham T.B.
        • Moyer R.F.
        • Yacoub D.
        • Kanko L.E.
        • Bryant D.M.
        • et al.
        MRI T2 and T1rho relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis.
        BMC Muscoskel Disord. 2019; 20: 182
        • Chalian M.
        • Li X.
        • Guermazi A.
        • Obuchowski N.A.
        • Carrino J.A.
        • Oei E.H.
        • et al.
        The QIBA profile for MRI-based compositional imaging of knee cartilage.
        Radiology. 2021; 204587
        • Schneider E.
        • Nessaiver M.
        The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update.
        Osteoarthritis Cartilage. 2013; 21: 110-116
        • Jordan C.D.
        • McWalter E.J.
        • Monu U.D.
        • Watkins R.D.
        • Chen W.
        • Bangerter N.K.
        • et al.
        Variability of CubeQuant T1rho, quantitative DESS T2, and cones sodium MRI in knee cartilage.
        Osteoarthritis Cartilage. 2014; 22: 1559-1567
        • Li X.
        • Wyatt C.
        • Rivoire J.
        • Han E.
        • Chen W.
        • Schooler J.
        • et al.
        Simultaneous acquisition of T1rho and T2 quantification in knee cartilage: repeatability and diurnal variation.
        J Magn Reson Imag. 2014; 39: 1287-1293
        • Li X.
        • Pedoia V.
        • Kumar D.
        • Rivoire J.
        • Wyatt C.
        • Lansdown D.
        • et al.
        Cartilage T1rho and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites.
        Osteoarthritis Cartilage. 2015; 23: 2214-2223
        • Balamoody S.
        • Williams T.G.
        • Wolstenholme C.
        • Waterton J.C.
        • Bowes M.
        • Hodgson R.
        • et al.
        Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study.
        Skeletal Radiol. 2013; 42: 511-520
        • Verschueren J.
        • Eijgenraam S.M.
        • Klein S.
        • Poot D.H.J.
        • Bierma-Zeinstra S.M.A.
        • Hernandez Tamames J.A.
        • et al.
        T2 mapping of healthy knee cartilage: multicenter multivendor reproducibility.
        Quant Imag Med Surg. 2021; 11: 1247-1255
        • Li X.
        • Han E.T.
        • Busse R.F.
        • Majumdar S.
        In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS).
        Magn Reson Med. 2008; 59: 298-307
        • Riegger-Krugh C.
        • Gerhart T.N.
        • Powers W.R.
        • Hayes W.C.
        Tibiofemoral contact pressures in degenerative joint disease.
        Clin Orthop Relat Res. 1998; 348: 233-245
        • Michalitsis S.
        • Vlychou M.
        • Malizos K.N.
        • Thriskos P.
        • Hantes M.E.
        Meniscal and articular cartilage lesions in the anterior cruciate ligament-deficient knee: correlation between time from injury and knee scores.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 232-239
        • Cain Jr., E.L.
        • Fleisig G.S.
        • Ponce B.A.
        • Boohaker H.A.
        • George M.P.
        • McGwin Jr., G.
        • et al.
        Variables associated with chondral and meniscal injuries in anterior cruciate ligament surgery.
        J Knee Surg. 2017; 30: 659-667
        • Dam E.B.
        • Lillholm M.
        • Marques J.
        • Nielsen M.
        Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative.
        J Med Imaging (Bellingham). 2015; 2024001
        • Panfilov E.
        • Tiulpin A.
        • Nieminen M.T.
        • Saarakkala S.
        • Casula V.
        Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: data from the Osteoarthritis Initiative.
        J Orthop Res. 2022; 40: 1113-1124
        • Haughom B.
        • Schairer W.
        • Souza R.B.
        • Carpenter D.
        • Ma C.B.
        • Li X.
        Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho.
        Knee. 2012; 19: 482-487
        • Theologis A.A.
        • Haughom B.
        • Liang F.
        • Zhang Y.
        • Majumdar S.
        • Link T.M.
        • et al.
        Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 298-307
        • Ithurburn M.P.
        • Zbojniewicz A.M.
        • Thomas S.
        • Evans K.D.
        • Pennell M.L.
        • Magnussen R.A.
        • et al.
        Lower patient-reported function at 2 years is associated with elevated knee cartilage T1rho and T2 relaxation times at 5 years in young athletes after ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2643-2652
        • Su F.
        • Pedoia V.
        • Teng H.L.
        • Kretzschmar M.
        • Lau B.C.
        • McCulloch C.E.
        • et al.
        The association between MR T1rho and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction.
        Osteoarthritis Cartilage. 2016; 24: 1180-1189
        • Wang X.
        • Wrigley T.V.
        • Bennell K.L.
        • Wang Y.
        • Fortin K.
        • Cicuttini F.M.
        • et al.
        Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction.
        J Orthop Res. 2018; 36: 2022-2029
        • Pfeiffer S.J.
        • Spang J.
        • Nissman D.
        • Lalush D.
        • Wallace K.
        • Harkey M.S.
        • et al.
        Gait mechanics and T1rho MRI of tibiofemoral cartilage 6 Months after ACL reconstruction.
        Med Sci Sports Exerc. 2019; 51: 630-639
        • Su F.
        • Hilton J.F.
        • Nardo L.
        • Wu S.
        • Liang F.
        • Link T.M.
        • et al.
        Cartilage morphology and T1rho and T2 quantification in ACL-reconstructed knees: a 2-year follow-up.
        Osteoarthritis Cartilage. 2013; 21: 1058-1067
        • Terzidis I.P.
        • Christodoulou A.G.
        • Ploumis A.L.
        • Metsovitis S.R.
        • Koimtzis M.
        • Givissis P.
        The appearance of kissing contusion in the acutely injured knee in the athletes.
        Br J Sports Med. 2004; 38: 592-596
        • Palmieri-Smith R.M.
        • Wojtys E.M.
        • Potter H.G.
        Early cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers-A pilot study.
        Arthroscopy. 2016; 32: 1309-1318
        • Pedoia V.
        • Su F.
        • Amano K.
        • Li Q.
        • McCulloch C.E.
        • Souza R.B.
        • et al.
        Analysis of the articular cartilage T1rho and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape.
        J Orthop Res. 2017; 35: 707-717
        • Dunn W.R.
        • Spindler K.P.
        • Consortium M.
        Predictors of activity level 2 years after anterior cruciate ligament reconstruction (ACLR): a Multicenter Orthopaedic Outcomes Network (MOON) ACLR cohort study.
        Am J Sports Med. 2010; 38: 2040-2050
        • Duchman K.R.
        • Westermann R.W.
        • Spindler K.P.
        • Reinke E.K.
        • Huston L.J.
        • Amendola A.
        • et al.
        The fate of meniscus tears left in situ at the time of anterior cruciate ligament reconstruction: a 6-year follow-up study from the MOON cohort.
        Am J Sports Med. 2015; 43: 2688-2695