Advertisement

[18F]Sodium fluoride PET-MRI detects increased metabolic bone response to whole-joint loading stress in osteoarthritic knees

Published:August 28, 2022DOI:https://doi.org/10.1016/j.joca.2022.08.004

      Summary

      Objective

      Altered joint function is a hallmark of osteoarthritis (OA). Imaging techniques for joint function are limited, but [18F]sodium fluoride (NaF) PET-MRI may assess the acute joint response to loading stresses. [18F]NaF PET-MRI was used to study the acute joint response to exercise in OA knees, and compare relationships between regions of increased uptake after loading and structural OA progression two years later.

      Methods

      In this prospective study, 10 participants with knee OA (59 ± 8 years; 8 female) were scanned twice consecutively using a PET-MR system and performed a one-legged squat exercise between scans. Changes in tracer uptake measures in 9 bone regions were compared between knees that did and did not exercise with a mixed-effects model. Areas of focally large changes in uptake between scans (ROIfocal, ΔSUVmax > 3) were identified and the presence of structural MRI features was noted. Five participants returned two years later to assess structural change on MRI.

      Results

      There was a significant increase in [18F]NaF uptake in OA exercised knees (SUV P < 0.001, Ki P = 0.002, K1 P < 0.001) that differed by bone region.

      Conclusion

      There were regional differences in the acute bone metabolic response to exercise and areas of focally large changes in the metabolic bone response that might be representative of whole-joint dysfunction.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chang S.
        • Mori D.
        • Kobayashi H.
        • Mori Y.
        • Nakamoto H.
        • Okada K.
        • et al.
        Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-KB pathway.
        Nat Commun [Internet]. 2019; 10 (Available from: https://doi.org/10.1038/s41467-019-09491-5)
        • Hayashi D.
        • Roemer F.W.
        • Guermazi A.
        Imaging of osteoarthritis - recent research developments and future perspective.
        Br J Radiol. 2018; 91
        • Kessler D.
        • MacKay J.
        • McDonald S.
        • et al.
        Effectively measuring exercise-related variations in T1p and T2 relaxation times of healthy articular cartilage.
        J Magn Reson Imaging. 2020; 52: 1753-1764
        • Chen M.
        • Qiu L.
        • Shen S.
        • Wang F.
        • Zhang J.
        • Zhang C.
        • et al.
        The influences of walking, running and stair activity on knee articular cartilage: quantitative MRI using T1 rho and T2 mapping.
        PLoS One. 2017; 12: 1-15
        • Souza R.B.
        • Kumar D.
        • Calixto N.
        • Singh J.
        • Schooler J.
        • Subburaj K.
        • et al.
        Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis.
        Osteoarthr Cartil. 2014; 22: 1367-1376
        • Mosher T.J.
        • Smith H.E.
        • Collins C.
        • Liu Y.
        • Hancy J.
        • Dardzinski B.J.
        • et al.
        Change in knee cartilage T2 at MR imaging after running: a feasibility study.
        Radiology [Internet]. 2005; 234 (Available from:): 245-249
        • Subburaj K.
        • Souza R.B.
        • Wyman B.T.
        • Le Graverand-Gastineau M.-P.H.
        • Li X.
        • Link T.M.
        • et al.
        Changes in MR relaxation times of the meniscus with acute loading: an in vivo pilot study in knee osteoarthritis.
        J Magn Reson Imaging [Internet]. 2015 Feb 1; 41 ([cited 2017 Sep 8]. Available from: https://doi.org/10.1002/jmri.24546): 536-543
        • Souza R.B.
        • Kumar D.
        • Calixto N.
        • Singh J.
        • Schooler J.
        • Subburaj K.
        • et al.
        Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis.
        Osteoarthr Cartil [Internet]. 2014; 22 ([cited 2017 Sep 8]. Available from:): 1367-1376
        • Van Ginckel A.
        • Witvrouw E.
        Acute cartilage loading responses after an in vivo squatting exercise in people with doubtful to mild knee osteoarthritis: a case-control study.
        Phys Ther [Internet]. 2013 Aug 1; 93 ([cited 2017 Sep 8]. Available from:): 1049-1060
        • Klein-Nulend J.
        • Bakker A.D.
        • Bacabac R.G.
        • Vatsa A.
        • Weinbaum S.
        Mechanosensation and transduction in osteocytes.
        Bone. 2013; 54: 182-190
        • Knapik D.M.
        • Perera P.
        • Nam J.
        • Blazek A.D.
        • Rath B.
        • Leblebicioglu B.
        • et al.
        Mechanosignaling in bone health, trauma, and inflammation.
        Antioxid Redox Signal. 2014; 20: 970-985
        • Roemer F.W.
        • Eckstein F.
        • Hayashi D.
        • Guermazi A.
        The role of imaging in osteoarthritis.
        Best Pract Res Clin Rheumatol [Internet]. 2014; 28 (Available from: https://doi.org/10.1016/j.berh.2014.02.002): 31-60
        • Piert M.
        • Zittel T.T.
        • Becker G.A.
        • Jahn M.
        • Stahlschmidt A.
        • Maier G.
        • et al.
        Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry.
        J Nucl Med. 2001; 42: 1091-1100
        • Piert M.
        • Zittel T.T.
        • Machulla H.J.
        • Becker G.A.
        • Jahn M.
        • Maier G.
        • et al.
        Blood flow measurements with [15O]H2O and [18F]fluoride ion pet in porcine vertebrae.
        J Bone Miner Res. 1998 Aug; 13: 1328-1336
        • Piert M.
        • Machulla H.J.
        • Jahn M.
        • Stahlschmidt A.
        • Becker G.A.
        • Zittel T.T.
        Coupling of porcine bone blood flow and metabolism in high-turnover bone disease measured by [15O]H2O and [18F]fluoride ion positron emission tomography.
        Eur J Nucl Med. 2002; 29: 907-914
        • Messa C.
        • Goodman W.G.
        • Hoh C.K.
        • Choi Y.
        • Nissenson A.R.
        • Salusky I.B.
        • et al.
        Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry.
        J Clin Endocrinol Metab. 1993; 77: 949-955
        • Frost M.L.
        • Cook G.J.R.
        • Blake G.M.
        • Marsden P.K.
        • Benatar N.A.
        • Fogelman I.
        A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography.
        J Bone Miner Res. 2003; 18: 2215-2222
        • Frost M.L.
        • Siddique M.
        • Blake G.M.
        • Moore A.E.
        • Schleyer P.J.
        • Dunn J.T.
        • et al.
        Differential effects of teriparatide on regional bone formation using 18F-fluoride positron emission tomography.
        J Bone Miner Res. 2011; 26: 1002-1011
        • Cook G.J.R.
        • Blake G.M.
        • Marsden P.K.
        • Cronin B.
        • Fogelman I.
        Quantification of skeletal kinetic indices in Paget's disease using dynamic 18F-fluoride positron emission tomography.
        J Bone Miner Res. 2002; 17: 854-859
        • Silva M.J.
        • Uthgenannt B.A.
        • Rutlin J.R.
        • Wohl G.R.
        • Lewis J.S.
        • Welch M.J.
        In vivo skeletal imaging of 18F-fluoride with positron emission tomography reveals damage- and time-dependent responses to fatigue loading in the rat ulna.
        Bone. 2006; 39: 229-236
        • Muir P.
        • Sample S.J.
        • Barrett J.G.
        • McCarthy J.
        • Vanderby R.
        • Markel M.D.
        • et al.
        Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
        Bone. 2007 Apr; 40: 948-956
        • Tomlinson R.E.
        • Silva M.J.
        • Shoghi K.I.
        Quantification of skeletal blood flow and fluoride metabolism in rats using PET in a pre-clinical stress fracture model.
        Mol Imaging Biol. 2012 Jun; 14: 348-354
        • Draper C.E.
        • Fredericson M.
        • Gold G.E.
        • Besier T.F.
        • Delp S.L.
        • Beaupre G.S.
        • et al.
        Patients with patellofemoral pain exhibit elevated bone metabolic activity at the patellofemoral joint.
        J Orthop Res. 2012 Feb; 30: 209-213
        • Draper C.E.
        • Quon A.
        • Fredericson M.
        • Besier T.F.
        • Delp S.L.
        • Beaupre G.S.
        • et al.
        Comparison of MRI and 18F-NaF PET/CT in patients with patellofemoral pain.
        J Magn Reson Imaging. 2012; 36: 928-932
        • Savic D.
        • Pedoia V.
        • Seo Y.
        • Yang J.
        • Bucknor M.
        • Franc B.L.
        • et al.
        Imaging bone-cartilage interactions in osteoarthritis using [18F]-NaF PET-MRI.
        Mol Imaging. 2016; 15: 1-12
        • Haddock B.
        • Fan A.P.
        • Uhlrich S.D.
        • Jørgensen N.R.
        • Suetta C.
        • Gold G.E.
        • et al.
        Assessment of acute bone loading in humans using [18F]NaF PET/MRI.
        Eur J Nucl Med Mol Imaging. 2019; 46: 2452-2463
        • Van Ginckel A.
        • Roosen P.
        • Almqvist K.F.
        • Verstraete K.
        • Witvrouw E.
        Effects of in vivo exercise on ankle cartilage deformation and recovery in healthy volunteers: an experimental study.
        Osteoarthr Cartil [Internet]. 2011; 19 (Available from: https://doi.org/10.1016/j.joca.2011.06.009): 1123-1131
        • Horng A.
        • Raya J.G.
        • Stockinger M.
        • Notohamiprodjo M.
        • Pietschmann M.
        • Hoehne-Hueckstaedt U.
        • et al.
        Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T.
        Eur Radiol [Internet]. 2015 Jun 17; 25 ([cited 2017 Sep 8]. Available from:): 1731-1741
        • Kogan F.
        • Levine E.
        • Chaudhari A.S.
        • Monu U.D.
        • Epperson K.
        • Oei E.H.G.
        • et al.
        Simultaneous bilateral-knee MR imaging.
        Magn Reson Med. 2018; 80: 529-537
        • Watkins L.E.
        • MacKay J.
        • Haddock B.
        • Mazzoli V.
        • Uhlrich S.D.
        • Gold G.E.
        • et al.
        Assessment of quantitative [18F]sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects.
        Osteoarthr Cartil [Internet]. 2021; (Available from: https://doi.org/10.1016/j.eplepsyres.2019.106192)
        • Hawkins R.A.
        • Choi Y.
        • Huang S.C.
        • Hoh C.K.
        • Dahlbom M.
        • Schiepers C.
        • et al.
        Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET.
        J Nucl Med. 1992; 33: 633-642
        • Haddock B.
        • Fan A.P.
        • Jørgensen N.R.
        • Suetta C.
        • Gold G.E.
        • Kogan F.
        Kinetic [18F]-Fluoride of the knee in normal volunteers.
        Clin Nucl Med. 2019; 44: 377-385
        • Buxton R.B.
        Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism.
        Front Neuroenergetics. 2010; 2
        • Eckstein F.
        In vivo cartilage deformation after different types of activity and its dependence on physical training status.
        Ann Rheum Dis [Internet]. 2005; 64 (Available from:): 291-295
        • Besier T.F.
        • Gold G.E.
        • Delp S.L.
        • Fredericson M.
        • Beaupré G.S.
        The influence of femoral internal and external rotation on cartilage stresses within the patellofemoral joint.
        J Orthop Res. 2008; 26: 1627-1635
        • Wojtys E.M.
        • Beaman D.N.
        • Glover R.A.
        • Janda D.
        Innervation of the human knee joint by substance-P fibers.
        Arthrosc J Arthrosc Relat Surg. 1990; 6: 254-263
        • Carter D.R.
        • Beaupré G.S.
        Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration.
        Cambridge University Press, New York2001: 201-234
        • Suri S.
        • Walsh D.A.
        Osteochondral alterations in osteoarthritis.
        Bone. 2012 Aug; 51: 204-211
        • MacKay J.W.
        • Watkins L.E.
        • Gold G.E.
        • Kogan F.
        [18F]NaF PET-MRI provides direct in-vivo evidence of the association between bone metabolic activity and adjacent synovitis in knee osteoarthritis: a cross-sectional study.
        Osteoarthr Cartil. 2021; 29: 1155-1162
        • Kobayashi N.
        • Inaba Y.
        • Tateishi U.
        • Ike H.
        • Kubota S.
        • Inoue T.
        • et al.
        Comparison of 18F-fluoride positron emission tomography and magnetic resonance imaging in evaluating early-stage osteoarthritis of the hip.
        Nucl Med Commun. 2015; 36: 84-89
        • Crowder H.A.
        • Mazzoli V.
        • Black M.S.
        • Watkins L.E.
        • Kogan F.
        • Hargreaves B.A.
        • et al.
        Characterizing the transient response of knee cartilage to running: decreases in cartilage T2 of female recreational runners.
        J Orthop Res. 2021; 39: 2340-2352
        • Uhlrich S.D.
        • Kolesar J.D.
        • Silder A.
        • Berkson M.Z.
        • Presten B.
        • Montague-Alamin H.A.
        • et al.
        Six weeks of personalized gait retraining to offload the medial compartment of the knee reduces pain more than sham gait retraining.
        Osteoarthr Cartil. 2019; 27: S28
        • Shull P.B.
        • Slider A.
        • Shultz R.
        • Dragoo J.L.
        • Besier T.F.
        • Delp S.L.
        • et al.
        Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis.
        J Orthop Res. 2013; 31: 1020-1025