Advertisement

Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies

      Summary

      Objective

      Osteoarthritis causes significant pain and disability with no approved disease-modifying drugs. We systematically reviewed the evidence from both pre-clinical and human studies for the potential disease-modifying effect of metformin in osteoarthritis.

      Methods

      Ovid Medline, Embase and CINAHL were searched between inception and June 2021 using MeSH terms and key words to identify studies examining the association between metformin use and outcome measures related to osteoarthritis. Two reviewers performed the risk of bias assessment and 3 reviewers extracted data independently. Qualitative evidence synthesis was performed. This systematic review is registered on PROSPERO (CRD42021261052 and CRD42021261060).

      Results

      Fifteen (10 pre-clinical and 5 human) studies were included. Most studies (10 pre-clinical and 3 human) assessed the effect of metformin using knee osteoarthritis models. In pre-clinical studies, metformin was assessed for the effect on structural outcomes (n = 10); immunomodulation (n = 5); pain (n = 4); and molecular pathways of its effect in osteoarthritis (n = 7). For human studies, metformin was evaluated for the effect on structural progression (n = 3); pain (n = 1); and immunomodulation (n = 1). Overall, pre-clinical studies consistently showed metformin having a chondroprotective, immunomodulatory and analgesic effect in osteoarthritis, predominantly mediated by adenosine monophosphate-activated protein kinase activation. Evidence from human studies, although limited, was consistent with findings in pre-clinical studies.

      Conclusion

      We found consistent evidence across pre-clinical and human studies to support a favourable effect of metformin on chondroprotection, immunomodulation and pain reduction in knee osteoarthritis. Further high-quality clinical trials are needed to confirm these findings as metformin could be a novel therapeutic drug for the treatment of osteoarthritis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Martel-Pelletier J.
        • Barr A.J.
        • Cicuttini F.M.
        • Conaghan P.G.
        • Cooper C.
        • Goldring M.B.
        • et al.
        Osteoarthritis.
        Nat Rev Dis Prim. 2016; 2: 16072
        • Vos T.
        • Allen C.
        • Arora M.
        • Barber R.M.
        • Bhutta Z.A.
        • Brown A.
        • et al.
        Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015.
        The Lancet. 2016; 388: 1545-1602
        • Bannuru R.R.
        • Osani M.C.
        • Vaysbrot E.E.
        • Arden N.K.
        • Bennell K.
        • Bierma-Zeinstra S.M.A.
        • et al.
        OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis.
        Osteoarthritis Cartilage. 2019; 27: 1578-1589
        • Markowicz-Piasecka M.
        • Huttunen K.M.
        • Mateusiak L.
        • Mikiciuk-Olasik E.
        • Sikora J.
        Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics.
        Curr Pharmaceut Des. 2017; 23: 2532-2550
        • Saisho Y.
        Metformin and inflammation: its potential beyond glucose-lowering effect.
        Endocr Metab Immune Disord - Drug Targets. 2015; 15: 196-205
        • Flory J.
        • Lipska K.
        Metformin in 2019.
        JAMA. 2019; 321: 1926-1927
        • Li H.
        • Ding X.
        • Terkeltaub R.
        • Lin H.
        • Zhang Y.
        • Zhou B.
        • et al.
        Exploration of metformin as novel therapy for osteoarthritis: preventing cartilage degeneration and reducing pain behavior.
        Arthritis Res Ther. 2020; 22: 34
        • Li J.
        • Zhang B.
        • Liu W.X.
        • Lu K.
        • Pan H.
        • Wang T.
        • et al.
        Metformin limits osteoarthritis development and progression through activation of AMPK signalling.
        Ann Rheum Dis. 2020; 79: 635-645
        • Na H.S.
        • Kwon J.Y.
        • Lee S.Y.
        • Lee S.H.
        • Lee A.R.
        • Woo J.S.
        • et al.
        Metformin attenuates monosodium-iodoacetate-induced osteoarthritis via regulation of pain mediators and the autophagy-lysosomal pathway.
        Cells. 2021; 10
        • Lu C.H.
        • Chung C.H.
        • Lee C.H.
        • Hsieh C.H.
        • Hung Y.J.
        • Lin F.H.
        • et al.
        Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: a nationwide, retrospective, matched-cohort study in Taiwan.
        PLoS ONE [Electr Res]. 2018; 13e0191242
        • Wang Y.
        • Hussain S.M.
        • Wluka A.E.
        • Lim Y.Z.
        • Abram F.
        • Pelletier J.P.
        • et al.
        Association between metformin use and disease progression in obese people with knee osteoarthritis: data from the Osteoarthritis Initiative-a prospective cohort study.
        Arthritis Res Ther. 2019; 21: 127
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        BMJ. 2021; 372: n71
        • Sterne J.A.C.
        • Savović J.
        • Page M.J.
        • Elbers R.G.
        • Blencowe N.S.
        • Boutron I.
        • et al.
        RoB 2: a revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; 366: l4898
        • Sterne J.A.
        • Hernán M.A.
        • Reeves B.C.
        • Savović J.
        • Berkman N.D.
        • Viswanathan M.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355: i4919
        • Hooijmans C.R.
        • Rovers M.M.
        • de Vries R.B.M.
        • Leenaars M.
        • Ritskes-Hoitinga M.
        • Langendam M.W.
        SYRCLE's risk of bias tool for animal studies.
        BMC Med Res Methodol. 2014; 14: 43
        • Bandow K.
        • Kusuyama J.
        • Kakimoto K.
        • Ohnishi T.
        • Matsuguchi T.
        AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation.
        Bone. 2015; 74: 125-133
        • Dawood A.F.
        • Alzamil N.
        • Ebrahim H.A.
        • Abdel Kader D.H.
        • Kamar S.S.
        • Haidara M.A.
        • et al.
        Metformin pretreatment suppresses alterations to the articular cartilage ultrastructure and knee joint tissue damage secondary to type 2 diabetes mellitus in rats.
        Ultrastruct Pathol. 2020; 44: 273-282
        • Feng X.
        • Pan J.
        • Li J.
        • Zeng C.
        • Qi W.
        • Shao Y.
        • et al.
        Metformin attenuates cartilage degeneration in an experimental osteoarthritis model by regulating AMPK/mTOR.
        Aging. 2020; 12: 1087-1103
        • Park M.J.
        • Moon S.J.
        • Baek J.A.
        • Lee E.J.
        • Jung K.A.
        • Kim E.K.
        • et al.
        Metformin augments anti-inflammatory and chondroprotective properties of mesenchymal stem cells in experimental osteoarthritis.
        J Immunol. 2019; 203: 127-136
        • Wang C.
        • Yang Y.
        • Zhang Y.
        • Liu J.
        • Yao Z.
        • Zhang C.
        Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes.
        Biosci Trends. 2019; 12: 605-612
        • Wang C.
        • Yao Z.
        • Zhang Y.
        • Yang Y.
        • Liu J.
        • Shi Y.
        • et al.
        Metformin mitigates cartilage degradation by activating AMPK/SIRT1-Mediated autophagy in a mouse osteoarthritis model.
        Front Pharmacol. 2020; 11
        • Zhang M.
        • Liu Y.
        • Huan Z.
        • Wang Y.
        • Xu J.
        Metformin protects chondrocytes against IL-1β induced injury by regulation of the AMPK/NF-κ B signaling pathway.
        Pharmazie. 2020; 75: 632-636
        • Barnett L.A.
        • Jordan K.P.
        • Edwards J.J.
        • van der Windt D.A.
        Does metformin protect against osteoarthritis? An electronic health record cohort study.
        Prim Health Care Res Dev. 2017; 18: 623-628
        • Mohammed M.
        • Al-Shamma K.
        • Jassim N.
        Evaluation of the anti-inflammatory effect of Metformin as adjuvant therapy to NSAID (Meloxicam) in patients with knee osteoarthritis.
        Int J Sci Nat. 2014; 5: 277-282
        • Mohammed M.
        • Al-Shamma K.
        • Jassim N.
        Evaluation of the clinical use of metformin or pioglitazone in combination with meloxicam in patients with knee osteoarthritis; using knee injury and osteoarthritis outcome score.
        Iraqi J Pharmaceut Sci. 2014; 23: 13-23
        • Barnett L.A.
        • Jordan K.P.
        • Edwards J.J.
        • van der Windt D.A.
        Does metformin protect against osteoarthritis? An electronic health record cohort study.
        Prim Health Care Res Dev. 2017; 18 (Cambridge University Press/UK)): 623-628
        • van der Kraan P.M.
        • van den Berg W.B.
        Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?.
        Osteoarthritis Cartilage. 2012; 20: 223-232
        • Dreier R.
        Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders.
        Arthritis Res Ther. 2010; 12: 216
        • Lawrence R.C.
        • Felson D.T.
        • Helmick C.G.
        • Arnold L.M.
        • Choi H.
        • Deyo R.A.
        • et al.
        Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II.
        Arthritis Rheum. 2008; 58: 26-35
        • Haugen I.K.
        • Englund M.
        • Aliabadi P.
        • Niu J.
        • Clancy M.
        • Kvien T.K.
        • et al.
        Prevalence, incidence and progression of hand osteoarthritis in the general population: the Framingham Osteoarthritis Study.
        Ann Rheum Dis. 2011; 70: 1581
        • Peat G.
        • Greig J.
        • Wood L.
        • Wilkie R.
        • Thomas E.
        • Croft P.
        • et al.
        Diagnostic discordance: we cannot agree when to call knee pain ‘osteoarthritis.
        Fam Pract. 2005; 22: 96-102
        • Hart D.J.
        • Doyle D.V.
        • Spector T.D.
        Association between metabolic factors and knee osteoarthritis in women: the Chingford Study.
        J Rheumatol. 1995; 22: 1118-1123
        • Loeser R.F.
        • Olex A.L.
        • McNulty M.A.
        • Carlson C.S.
        • Callahan M.F.
        • Ferguson C.M.
        • et al.
        Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice.
        Arthritis Rheum. 2012; 64: 705-717
        • Melemedjian O.K.
        • Khoutorsky A.
        • Sorge R.E.
        • Yan J.
        • Asiedu M.N.
        • Valdez A.
        • et al.
        mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK.
        Pain. 2013; 154: 1080-1091
        • Wang B.
        • Shi Y.
        • Chen J.
        • Shao Z.
        • Ni L.
        • Lin Y.
        • et al.
        High glucose suppresses autophagy through the AMPK pathway while it induces autophagy via oxidative stress in chondrocytes.
        Cell Death Dis. 2021; 12: 506
        • Chen L.Y.
        • Wang Y.
        • Terkeltaub R.
        • Liu-Bryan R.
        Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function.
        Osteoarthritis Cartilage. 2018; 26: 1539-1550
        • Zhou S.
        • Lu W.
        • Chen L.
        • Ge Q.
        • Chen D.
        • Xu Z.
        • et al.
        AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice.
        Sci Rep. 2017; 7: 43245
        • Zhang H.
        • Wang H.
        • Zeng C.
        • Yan B.
        • Ouyang J.
        • Liu X.
        • et al.
        mTORC1 activation downregulates FGFR3 and PTH/PTHrP receptor in articular chondrocytes to initiate osteoarthritis.
        Osteoarthritis Cartilage. 2017; 25: 952-963
        • Ribeiro M.
        • López de Figueroa P.
        • Nogueira-Recalde U.
        • Centeno A.
        • Mendes A.F.
        • Blanco F.J.
        • et al.
        Diabetes-accelerated experimental osteoarthritis is prevented by autophagy activation.
        Osteoarthritis Cartilage. 2016; 24: 2116-2125