Sympathectomy aggravates subchondral bone changes during osteoarthritis progression in mice without affecting cartilage degeneration or synovial inflammation

Published:December 01, 2021DOI:



      Osteoarthritis (OA) pathogenesis involves the interaction of articular cartilage with surrounding tissues, which are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers suggesting a role of the sympathetic nervous system (SNS) during OA progression. We analyzed the effects of sympathectomy (Syx) in a murine OA model.


      Peripheral Syx was generated by 6-hydroxydopamine (6-OHDA) injections in male C57BL/6 mice. OA was induced in wild-type (WT) and Syx mice by destabilization of the medial meniscus (DMM). TH+ fibers and splenic NE were analyzed to evaluate Syx efficiency. OA progression was examined by OARSI and synovitis scores and micro-CT. Expression of TH, α2A- and β2-adrenergic receptors (AR), and activity of osteoblasts (ALP) and osteoclasts (TRAP) was investigated by stainings.


      Syx resulted in synovial TH+ fiber elimination and splenic NE decrease. Cartilage degradation and synovitis after DMM were comparably progressive in both WT and Syx mice. Calcified cartilage (CC) and subchondral bone plate (SCBP) thickness and bone volume fraction (BV/TV) increased in Syx mice due to increased ALP and decreased TRAP activities compared to WT 8 weeks after DMMWT and Syx mice developed osteophytes and meniscal ossicles without any differences between the groups. AR numbers decreased in cartilage but increased in synovium and osteophyte regions after DMM in both WT and Syx mice.


      Peripheral dampening of SNS activity aggravated OA-specific cartilage calcification and subchondral bone thickening but did not influence cartilage degradation and synovitis. Therefore, SNS might be an attractive target for the development of novel therapeutic strategies for pathologies of the subchondral bone.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • McCorry L.K.
        Physiology of the autonomic nervous system.
        Am J Pharm Educ. 2007; 71: 78
        • Grässel S.
        • Straub R.H.
        • Jenei-Lanzl Z.
        The sensory and sympathetic nervous system in cartilage physiology and pathophysiology.
        in: Grässel S. Aszódi A. Cartilage: Volume 2: Pathophysiology. Springer International Publishing, Cham2017: 191-227
        • Malpas S.C.
        Sympathetic nervous system overactivity and its role in the development of cardiovascular disease.
        Physiol Rev. 2010; 90: 513-557
        • McEwen B.S.
        • Stellar E.
        Stress and the individual. Mechanisms leading to disease.
        Arch Intern Med. 1993; 153: 2093-2101
        • Nagatsu T.
        • Levitt M.
        • Udenfriend S.
        Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis.
        J Biol Chem. 1964; 239: 2910-2917
        • Eitner A.
        • Pester J.
        • Nietzsche S.
        • Hofmann G.O.
        • Schaible H.G.
        The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium.
        Osteoarthritis Cartilage. 2013; 21: 1383-1391
        • Mach D.B.
        • Rogers S.D.
        • Sabino M.C.
        • Luger N.M.
        • Schwei M.J.
        • Pomonis J.D.
        • et al.
        Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur.
        Neuroscience. 2002; 113: 155-166
        • Hukkanen M.
        • Konttinen Y.T.
        • Rees R.G.
        • Santavirta S.
        • Terenghi G.
        • Polak J.M.
        Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone.
        Int J Tissue React. 1992; 14: 1-10
        • Schwab W.
        • Funk R.H.
        Innervation pattern of different cartilaginous tissues in the rat.
        Acta Anat (Basel). 1998; 163: 184-190
        • El Bagdadi K.
        • Zaucke F.
        • Meurer A.
        • Straub R.H.
        • Jenei-Lanzl Z.
        Norepinephrine inhibits synovial adipose stem cell chondrogenesis via alpha2a-adrenoceptor-mediated ERK1/2 activation.
        Int J Mol Sci. 2019; 20
        • Sohn R.
        • Rosch G.
        • Junker M.
        • Meurer A.
        • Zaucke F.
        • Jenei-Lanzl Z.
        Adrenergic signalling in osteoarthritis.
        Cell Signal. 2021; 82: 109948
        • Takeda S.
        • Elefteriou F.
        • Levasseur R.
        • Liu X.
        • Zhao L.
        • Parker K.L.
        • et al.
        Leptin regulates bone formation via the sympathetic nervous system.
        Cell. 2002; 111: 305-317
        • Kaczmarczyk-Sedlak I.
        • Cegiela U.
        • Nowinska B.
        • Folwarczna J.
        Effects of catecholamines on the intramedullary pressure in the femur in rats with prednisolone-induced osteoporosis.
        Pharmacol Rep. 2006; 58: 540-550
        • Palo N.
        • Chandel S.S.
        • Dash S.K.
        • Arora G.
        • Kumar M.
        • Biswal M.R.
        Effects of osteoarthritis on quality of life in elderly population of Bhubaneswar, India: a prospective multicenter screening and therapeutic study of 2854 patients.
        Geriatr Orthop Surg Rehabil. 2015; 6: 269-275
        • Loeser R.F.
        • Goldring S.R.
        • Scanzello C.R.
        • Goldring M.B.
        Osteoarthritis: a disease of the joint as an organ.
        Arthritis Rheum. 2012; 64: 1697-1707
        • Martel-Pelletier J.
        • Barr A.J.
        • Cicuttini F.M.
        • Conaghan P.G.
        • Cooper C.
        • Goldring M.B.
        • et al.
        Nat Rev Dis Primers. 2016; 2: 16072
        • Lai L.P.
        • Mitchell J.
        Beta2-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X.
        J Cell Biochem. 2008; 104: 545-553
        • Mitchell J.
        • Lai L.P.
        • Peralta F.
        • Xu Y.
        • Sugamori K.
        beta2-adrenergic receptors inhibit the expression of collagen type II in growth plate chondrocytes by stimulating the AP-1 factor Jun-B.
        Am J Physiol Endocrinol Metab. 2011; 300: E633-E639
        • Lorenz J.
        • Schafer N.
        • Bauer R.
        • Jenei-Lanzl Z.
        • Springorum R.H.
        • Grassel S.
        Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses.
        Osteoarthritis Cartilage. 2016; 24: 325-334
        • Miller L.E.
        • Grifka J.
        • Schölmerich J.
        • Straub R.H.
        Norepinephrine from synovial tyrosine hydroxylase positive cells is a strong indicator of synovial inflammation in rheumatoid arthritis.
        J Rheumatol. 2002; 29: 427
        • Aitken S.J.
        • Landao-Bassonga E.
        • Ralston S.H.
        • Idris A.I.
        Beta2-adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms.
        Arch Biochem Biophys. 2009; 482: 96-103
        • Grassel S.
        • Muschter D.
        Do neuroendocrine peptides and their receptors qualify as novel therapeutic targets in osteoarthritis?.
        Int J Mol Sci. 2018; 19
        • Jiao K.
        • Niu L.N.
        • Li Q.H.
        • Ren G.T.
        • Zhao C.M.
        • Liu Y.D.
        • et al.
        beta2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis.
        Sci Rep. 2015; 5: 12593
        • Jiao K.
        • Zeng G.
        • Niu L.N.
        • Yang H.X.
        • Ren G.T.
        • Xu X.Y.
        • et al.
        Activation of alpha2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint.
        Sci Rep. 2016; 6: 30085
        • Lilly G.D.
        Effect of sympathectomy on development of chronic osteoarthritis: case report.
        Ann Surg. 1966; 163: 856-858
        • Glasson S.S.
        • Blanchet T.J.
        • Morris E.A.
        The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse.
        Osteoarthritis Cartilage. 2007; 15: 1061-1069
        • Harle P.
        • Mobius D.
        • Carr D.J.
        • Scholmerich J.
        • Straub R.H.
        An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis.
        Arthritis Rheum. 2005; 52: 1305-1313
        • Harle P.
        • Pongratz G.
        • Albrecht J.
        • Tarner I.H.
        • Straub R.H.
        An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells.
        Arthritis Rheum. 2008; 58: 2347-2355
        • Glasson S.S.
        • Chambers M.G.
        • Van Den Berg W.B.
        • Little C.B.
        The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse.
        Osteoarthritis Cartilage. 2010; 18: S17-S23
        • Krenn V.
        • Morawietz L.
        • Burmester G.R.
        • Kinne R.W.
        • Mueller-Ladner U.
        • Muller B.
        • et al.
        Synovitis score: discrimination between chronic low-grade and high-grade synovitis.
        Histopathology. 2006; 49: 358-364
        • Muschter D.
        • Fleischhauer L.
        • Taheri S.
        • Schilling A.F.
        • Clausen-Schaumann H.
        • Grassel S.
        Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model.
        Bone. 2020; 133: 115181
        • Das Neves Borges P.
        • Vincent T.L.
        • Marenzana M.
        Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.
        PLos One. 2017; 12: e0174294
        • Pagani F.
        • Francucci C.M.
        • Moro L.
        Markers of bone turnover: biochemical and clinical perspectives.
        J Endocrinol Invest. 2005; 28: 8-13
        • Capellino S.
        • Cosentino M.
        • Wolff C.
        • Schmidt M.
        • Grifka J.
        • Straub R.H.
        Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target.
        Ann Rheum Dis. 2010; 69: 1853-1860
        • Ma H.L.
        • Blanchet T.J.
        • Peluso D.
        • Hopkins B.
        • Morris E.A.
        • Glasson S.S.
        Osteoarthritis severity is sex dependent in a surgical mouse model.
        Osteoarthritis Cartilage. 2007; 15: 695-700
        • Beery A.K.
        Inclusion of females does not increase variability in rodent research studies.
        Curr Opin Behav Sci. 2018; 23: 143-149
        • Jenei-Lanzl Z.
        • Capellino S.
        • Kees F.
        • Fleck M.
        • Lowin T.
        • Straub R.H.
        Anti-inflammatory effects of cell-based therapy with tyrosine hydroxylase-positive catecholaminergic cells in experimental arthritis.
        Ann Rheum Dis. 2015; 74: 444-451
        • Pongratz G.
        • Straub R.H.
        The sympathetic nervous response in inflammation.
        Arthritis Res Ther. 2014; 16: 504
        • Watari T.
        • Naito K.
        • Sakamoto K.
        • Kurosawa H.
        • Nagaoka I.
        • Kaneko K.
        Evaluation of the effect of oxidative stress on articular cartilage in spontaneously osteoarthritic STR/OrtCrlj mice by measuring the biomarkers for oxidative stress and type II collagen degradation/synthesis.
        Exp Ther Med. 2011; 2: 245-250
        • Almonte-Becerril M.
        • Navarro-Garcia F.
        • Gonzalez-Robles A.
        • Vega-Lopez M.A.
        • Lavalle C.
        • Kouri J.B.
        Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model.
        Apoptosis. 2010; 15: 631-638
        • Lewis J.S.
        • Hembree W.C.
        • Furman B.D.
        • Tippets L.
        • Cattel D.
        • Huebner J.L.
        • et al.
        Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee.
        Osteoarthritis Cartilage. 2011; 19: 864-873
        • Mishra I.
        • Pullum K.B.
        • Thayer D.C.
        • Plummer E.R.
        • Conkright B.W.
        • Morris A.J.
        • et al.
        Chemical sympathectomy reduces peripheral inflammatory responses to acute and chronic sleep fragmentation.
        Am J Physiol Regul Integr Comp Physiol. 2020; 318: R781-R789
        • Muschter D.
        • Schafer N.
        • Stangl H.
        • Straub R.H.
        • Grassel S.
        Sympathetic neurotransmitters modulate osteoclastogenesis and osteoclast activity in the context of collagen-induced arthritis.
        PLos One. 2015; 10: e0139726
        • Hu K.
        • Zhou H.
        • Zhang G.
        • Qin R.
        • Hou R.
        • Kong L.
        • et al.
        The effect of chemical sympathectomy and stress on bone remodeling in adult rats.
        Neuroendocrinol Lett. 2010; 31: 807-813
        • Elefteriou F.
        • Ahn J.D.
        • Takeda S.
        • Starbuck M.
        • Yang X.
        • Liu X.
        • et al.
        Leptin regulation of bone resorption by the sympathetic nervous system and CART.
        Nature. 2005; 434: 514-520
        • Bonnet N.
        • Brunet-Imbault B.
        • Arlettaz A.
        • Horcajada M.N.
        • Collomp K.
        • Benhamou C.L.
        • et al.
        Alteration of trabecular bone under chronic beta2 agonists treatment.
        Med Sci Sports Exerc. 2005; 37: 1493-1501
        • Elefteriou F.
        Regulation of bone remodeling by the central and peripheral nervous system.
        Arch Biochem Biophys. 2008; 473: 231-236
        • Uchino M.
        • Izumi T.
        • Tominaga T.
        • Wakita R.
        • Minehara H.
        • Sekiguchi M.
        • et al.
        Growth factor expression in the osteophytes of the human femoral head in osteoarthritis.
        Clin Orthop Relat Res. 2000; : 119-125
        • van Osch G.J.
        • van der Kraan P.M.
        • van Valburg A.A.
        • van den Berg W.B.
        The relation between cartilage damage and osteophyte size in a murine model for osteoarthritis in the knee.
        Rheumatol Int. 1996; 16: 115-119
        • Zhu J.
        • Zhu Y.
        • Xiao W.
        • Hu Y.
        • Li Y.
        Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis.
        Ann Transl Med. 2020; 8: 350