Advertisement

Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain

  • D. Wang
    Affiliations
    Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China
    Search for articles by this author
  • X.-Q. Chai
    Affiliations
    Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China
    Search for articles by this author
  • S.-S. Hu
    Correspondence
    Address correspondence and reprint requests to: Shan-shan Hu, Meishan Road 81, Anhui Medical University, Hefei 230001, China.
    Affiliations
    The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, PR China (Anhui Medical University), Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
    Search for articles by this author
  • F. Pan
    Affiliations
    Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
    Search for articles by this author
Published:November 30, 2021DOI:https://doi.org/10.1016/j.joca.2021.11.014

      Summary

      Osteoarthritis is the most common form of joint disease and is one of the leading causes of chronic pain. Given the multi-factorial nature, numerous efforts have been made to clarify the multiple factors impacting the pain symptoms and joint pathology, including synovial macrophages in particular. Accumulating evidence from studies involving human participants and experimental animal models suggests that accumulating macrophages in synovial tissue are implicated in peripherally mediated pain sensitization of affected joints in osteoarthritis. Crosstalk between synovial macrophages and the innervating primary nociceptive neurons is thought to contribute to this facilitated pain processing by the peripheral nervous system. Due to high plasticity and complexity of synovial macrophages in the joint, safe therapies targeting single cells or molecules are currently lacking. Using advanced technologies (such as single-cell RNA sequencing and mass cytometry), studies have shown that diverse subpopulations of synovial macrophages exist in the distinct synovial microenvironments of specific osteoarthritis subtypes. Considerable progress has been made in delineating the molecular mechanisms of various subsets of synovial macrophages in the development of osteoarthritis. To develop a novel intra-articular treatment paradigm targeting synovial macrophages, we have summarized in this review the recent advances in identifying the functional consequences of synovial macrophage sub-populations and understanding of the molecular mechanisms driving macrophage-mediated remodeling.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Neogi T.
        The epidemiology and impact of pain in osteoarthritis.
        Osteoarthritis Cartilage. 2013; 21: 1145-1153
        • Kolasinski S.L.
        • Neogi T.
        • Hochberg M.C.
        • Oatis C.
        • Guyatt G.
        • Block J.
        • et al.
        2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee.
        Arthritis Care Res (Hoboken). 2020; 72: 149-162
        • Murphy L.
        • Schwartz T.A.
        • Helmick C.G.
        • Renner J.B.
        • Tudor G.
        • Koch G.
        • et al.
        Lifetime risk of symptomatic knee osteoarthritis.
        Arthritis Rheum. 2008; 59: 1207-1213
        • Wade K.F.
        • Marshall A.
        • Vanhoutte B.
        • Wu F.C.
        • O'Neill T.W.
        • Lee D.M.
        Does pain predict frailty in older men and women? Findings from the English longitudinal study of ageing (ELSA).
        J Gerontol A Biol Sci Med Sci. 2017; 72: 403-409
        • Davis D.H.
        • Rockwood M.R.
        • Mitnitski A.B.
        • Rockwood K.
        Impairments in mobility and balance in relation to frailty.
        Arch Gerontol Geriatr. 2011; 53: 79-83
        • van Middelkoop M.
        • Arden N.K.
        • Atchia I.
        • Birrell F.
        • Chao J.
        • Rezende M.U.
        • et al.
        The OA Trial Bank: meta-analysis of individual patient data from knee and hip osteoarthritis trials show that patients with severe pain exhibit greater benefit from intra-articular glucocorticoids.
        Osteoarthritis Cartilage. 2016; 24: 1143-1152
        • McAlindon T.E.
        • LaValley M.P.
        • Harvey W.F.
        • Price L.L.
        • Driban J.B.
        • Zhang M.
        • et al.
        Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial.
        JAMA. 2017; 317: 1967-1975
        • Nguyen C.
        • Rannou F.
        The safety of intra-articular injections for the treatment of knee osteoarthritis: a critical narrative review.
        Expet Opin Drug Saf. 2017; 16: 897-902
        • Kompel A.J.
        • Roemer F.W.
        • Murakami A.M.
        • Diaz L.E.
        • Crema M.D.
        • Guermazi A.
        Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought?.
        Radiology. 2019; 293: 656-663
        • Zhang H.
        • Cai D.
        • Bai X.
        Macrophages regulate the progression of osteoarthritis.
        Osteoarthritis Cartilage. 2020; 28: 555-561
        • Domoto R.
        • Sekiguchi F.
        • Tsubota M.
        • Kawabata A.
        Macrophage as a peripheral pain regulator.
        Cells. 2021; : 10
        • Miller R.E.
        • Tran P.B.
        • Das R.
        • Ghoreishi-Haack N.
        • Ren D.
        • Miller R.J.
        • et al.
        CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis.
        Proc Natl Acad Sci U S A. 2012; 109: 20602-20607
        • Zhang H.
        • Lin C.
        • Zeng C.
        • Wang Z.
        • Wang H.
        • Lu J.
        • et al.
        Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2.
        Ann Rheum Dis. 2018; 77: 1524-1534
        • Geraghty T.
        • Winter D.R.
        • Miller R.J.
        • Miller R.E.
        • Malfait A.M.
        Neuroimmune interactions and osteoarthritis pain: focus on macrophages.
        Pain Rep. 2021; 6: e892
        • Pan T.T.
        • Pan F.
        • Gao W.
        • Hu S.S.
        • Wang D.
        Involvement of macrophages and spinal microglia in osteoarthritis pain.
        Curr Rheumatol Rep. 2021; 23: 29
        • Chen O.
        • Donnelly C.R.
        • Ji R.R.
        Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons.
        Curr Opin Neurobiol. 2020; 62: 17-25
        • Chan F.K.L.
        • Ching J.Y.L.
        • Tse Y.K.
        • Lam K.
        • Wong G.L.H.
        • Ng S.C.
        • et al.
        Gastrointestinal safety of celecoxib versus naproxen in patients with cardiothrombotic diseases and arthritis after upper gastrointestinal bleeding (CONCERN): an industry-independent, double-blind, double-dummy, randomised trial.
        Lancet. 2017; 389: 2375-2382
        • Nissen S.E.
        • Yeomans N.D.
        • Solomon D.H.
        • Luscher T.F.
        • Libby P.
        • Husni M.E.
        • et al.
        Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis.
        N Engl J Med. 2016; 375: 2519-2529
        • Solomon D.H.
        • Husni M.E.
        • Libby P.A.
        • Yeomans N.D.
        • Lincoff A.M.
        • Lupsilonscher T.F.
        • et al.
        The risk of major NSAID toxicity with celecoxib, ibuprofen, or naproxen: a secondary analysis of the PRECISION trial.
        Am J Med. 2017; 130: 1415-1422 e1414
        • Rannou F.
        • Pelletier J.P.
        • Martel-Pelletier J.
        Efficacy and safety of topical NSAIDs in the management of osteoarthritis: evidence from real-life setting trials and surveys.
        Semin Arthritis Rheum. 2016; 45: S18-S21
        • Tugwell P.S.
        • Wells G.A.
        • Shainhouse J.Z.
        Equivalence study of a topical diclofenac solution (pennsaid) compared with oral diclofenac in symptomatic treatment of osteoarthritis of the knee: a randomized controlled trial.
        J Rheumatol. 2004; 31: 2002-2012
        • Busse J.W.
        • Wang L.
        • Kamaleldin M.
        • Craigie S.
        • Riva J.J.
        • Montoya L.
        • et al.
        Opioids for chronic noncancer pain: a systematic review and meta-analysis.
        JAMA. 2018; 320: 2448-2460
        • Krebs E.E.
        • Gravely A.
        • Nugent S.
        • Jensen A.C.
        • DeRonne B.
        • Goldsmith E.S.
        • et al.
        Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial.
        JAMA. 2018; 319: 872-882
        • Curtis J.R.
        • Xie F.
        • Smith C.
        • Saag K.G.
        • Chen L.
        • Beukelman T.
        • et al.
        Changing trends in opioid use among patients with rheumatoid arthritis in the United States.
        Arthritis Rheum. 2017; 69: 1733-1740
        • Thorlund J.B.
        • Turkiewicz A.
        • Prieto-Alhambra D.
        • Englund M.
        Opioid use in knee or hip osteoarthritis: a region-wide population-based cohort study.
        Osteoarthritis Cartilage. 2019; 27: 871-877
        • Wluka A.E.
        • Yan M.K.
        • Lim K.Y.
        • Hussain S.M.
        • Cicuttini F.M.
        Does preoperative neuropathic-like pain and central sensitisation affect the post-operative outcome of knee joint replacement for osteoarthritis? A systematic review and meta analysis.
        Osteoarthritis Cartilage. 2020; 28: 1403-1411
        • Kurien T.
        • Arendt-Nielsen L.
        • Petersen K.K.
        • Graven-Nielsen T.
        • Scammell B.E.
        Preoperative neuropathic pain-like symptoms and central pain mechanisms in knee osteoarthritis predicts poor outcome 6 Months after total knee replacement surgery.
        J Pain. 2018; 19: 1329-1341
        • Soni A.
        • Wanigasekera V.
        • Mezue M.
        • Cooper C.
        • Javaid M.K.
        • Price A.J.
        • et al.
        Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and PainDETECT-based patient stratification to arthroplasty outcome.
        Arthritis Rheum. 2019; 71: 550-560
        • Akin-Akinyosoye K.
        • James R.J.E.
        • McWilliams D.F.
        • Millar B.
        • das Nair R.
        • Ferguson E.
        • et al.
        The Central Aspects of Pain in the Knee (CAP-Knee) questionnaire; a mixed-methods study of a self-report instrument for assessing central mechanisms in people with knee pain.
        Osteoarthritis Cartilage. 2021; 29: 802-814
        • Clauw D.J.
        • Hassett A.L.
        The role of centralised pain in osteoarthritis.
        Clin Exp Rheumatol. 2017; 35: 79-84
        • Hassan H.
        • Walsh D.A.
        Central pain processing in osteoarthritis: implications for treatment.
        Pain Manag. 2014; 4: 45-56
        • Syx D.
        • Tran P.B.
        • Miller R.E.
        • Malfait A.M.
        Peripheral mechanisms contributing to osteoarthritis pain.
        Curr Rheumatol Rep. 2018; 20: 9
        • Zhu S.
        • Zhu J.
        • Zhen G.
        • Hu Y.
        • An S.
        • Li Y.
        • et al.
        Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain.
        J Clin Invest. 2019; 129: 1076-1093
        • Just S.
        • Pawlak M.
        • Heppelmann B.
        Responses of fine primary afferent nerve fibres innervating the rat knee joint to defined torque.
        J Neurosci Methods. 2000; 103: 157-162
        • Inglis J.J.
        • McNamee K.E.
        • Chia S.L.
        • Essex D.
        • Feldmann M.
        • Williams R.O.
        • et al.
        Regulation of pain sensitivity in experimental osteoarthritis by the endogenous peripheral opioid system.
        Arthritis Rheum. 2008; 58: 3110-3119
        • Miller R.E.
        • Kim Y.S.
        • Tran P.B.
        • Ishihara S.
        • Dong X.
        • Miller R.J.
        • et al.
        Visualization of peripheral neuron sensitization in a surgical mouse model of osteoarthritis by in vivo calcium imaging.
        Arthritis Rheum. 2018; 70: 88-97
        • Miller R.E.
        • Belmadani A.
        • Ishihara S.
        • Tran P.B.
        • Ren D.
        • Miller R.J.
        • et al.
        Damage-associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through Toll-like receptor 4.
        Arthritis Rheum. 2015; 67: 2933-2943
        • Shin S.M.
        • Cai Y.
        • Itson-Zoske B.
        • Qiu C.
        • Hao X.
        • Xiang H.
        • et al.
        Enhanced T-type calcium channel 3.2 activity in sensory neurons contributes to neuropathic-like pain of monosodium iodoacetate-induced knee osteoarthritis.
        Mol Pain. 2020; 16 (1744806920963807)
        • Malfait A.M.
        • Miller R.J.
        Emerging targets for the management of osteoarthritis pain.
        Curr Osteoporos Rep. 2016; 14: 260-268
        • Buckwalter J.A.
        • Mankin H.J.
        • Grodzinsky A.J.
        Articular cartilage and osteoarthritis.
        Instr Course Lect. 2005; 54: 465-480
        • Ashraf S.
        • Mapp P.I.
        • Walsh D.A.
        Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis.
        Arthritis Rheum. 2011; 63: 2700-2710
        • Creamer P.
        • Hunt M.
        • Dieppe P.
        Pain mechanisms in osteoarthritis of the knee: effect of intraarticular anesthetic.
        J Rheumatol. 1996; 23: 1031-1036
        • Zhang Y.
        • Nevitt M.
        • Niu J.
        • Lewis C.
        • Torner J.
        • Guermazi A.
        • et al.
        Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging.
        Arthritis Rheum. 2011; 63: 691-699
        • Neogi T.
        • Guermazi A.
        • Roemer F.
        • Nevitt M.C.
        • Scholz J.
        • Arendt-Nielsen L.
        • et al.
        Association of joint inflammation with pain sensitization in knee osteoarthritis: the multicenter osteoarthritis study.
        Arthritis Rheum. 2016; 68: 654-661
        • Sarmanova A.
        • Hall M.
        • Moses J.
        • Doherty M.
        • Zhang W.
        Synovial changes detected by ultrasound in people with knee osteoarthritis - a meta-analysis of observational studies.
        Osteoarthritis Cartilage. 2016; 24: 1376-1383
        • Stoppiello L.A.
        • Mapp P.I.
        • Wilson D.
        • Hill R.
        • Scammell B.E.
        • Walsh D.A.
        Structural associations of symptomatic knee osteoarthritis.
        Arthritis Rheum. 2014; 66: 3018-3027
        • Kraus V.B.
        • McDaniel G.
        • Huebner J.L.
        • Stabler T.V.
        • Pieper C.F.
        • Shipes S.W.
        • et al.
        Direct in vivo evidence of activated macrophages in human osteoarthritis.
        Osteoarthritis Cartilage. 2016; 24: 1613-1621
        • Daghestani H.N.
        • Pieper C.F.
        • Kraus V.B.
        Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis.
        Arthritis Rheum. 2015; 67: 956-965
        • Haraden C.A.
        • Huebner J.L.
        • Hsueh M.F.
        • Li Y.J.
        • Kraus V.B.
        Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation.
        Arthritis Res Ther. 2019; 21: 146
        • Gomez-Aristizabal A.
        • Gandhi R.
        • Mahomed N.N.
        • Marshall K.W.
        • Viswanathan S.
        Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: a cohort study.
        Arthritis Res Ther. 2019; 21: 26
        • Blom A.B.
        • van Lent P.L.
        • Libregts S.
        • Holthuysen A.E.
        • van der Kraan P.M.
        • van Rooijen N.
        • et al.
        Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3.
        Arthritis Rheum. 2007; 56: 147-157
        • Sakurai Y.
        • Fujita M.
        • Kawasaki S.
        • Sanaki T.
        • Yoshioka T.
        • Higashino K.
        • et al.
        Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors.
        Pain. 2019; 160: 895-907
        • Bondeson J.
        • Wainwright S.D.
        • Lauder S.
        • Amos N.
        • Hughes C.E.
        The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis.
        Arthritis Res Ther. 2006; 8: R187
        • Sambamurthy N.
        • Zhou C.
        • Nguyen V.
        • Smalley R.
        • Hankenson K.D.
        • Dodge G.R.
        • et al.
        Deficiency of the pattern-recognition receptor CD14 protects against joint pathology and functional decline in a murine model of osteoarthritis.
        PLoS One. 2018; 13e0206217
        • Griffin T.M.
        • Scanzello C.R.
        Innate inflammation and synovial macrophages in osteoarthritis pathophysiology.
        Clin Exp Rheumatol. 2019; 37: 57-63
        • He X.H.
        • Zang Y.
        • Chen X.
        • Pang R.P.
        • Xu J.T.
        • Zhou X.
        • et al.
        TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury.
        Pain. 2010; 151: 266-279
        • Ji R.R.
        • Xu Z.Z.
        • Gao Y.J.
        Emerging targets in neuroinflammation-driven chronic pain.
        Nat Rev Drug Discov. 2014; 13: 533-548
        • Inglis J.J.
        • Nissim A.
        • Lees D.M.
        • Hunt S.P.
        • Chernajovsky Y.
        • Kidd B.L.
        The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation.
        Arthritis Res Ther. 2005; 7: R807-R816
        • Segond von Banchet G.
        • Boettger M.K.
        • Fischer N.
        • Gajda M.
        • Brauer R.
        • Schaible H.G.
        Experimental arthritis causes tumor necrosis factor-alpha-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior.
        Pain. 2009; 145: 151-159
        • Kapoor M.
        • Martel-Pelletier J.
        • Lajeunesse D.
        • Pelletier J.P.
        • Fahmi H.
        Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.
        Nat Rev Rheumatol. 2011; 7: 33-42
        • Attur M.
        • Belitskaya-Levy I.
        • Oh C.
        • Krasnokutsky S.
        • Greenberg J.
        • Samuels J.
        • et al.
        Increased interleukin-1beta gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis.
        Arthritis Rheum. 2011; 63: 1908-1917
        • Obreja O.
        • Rathee P.K.
        • Lips K.S.
        • Distler C.
        • Kress M.
        IL-1 beta potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C.
        Faseb J. 2002; 16: 1497-1503
        • Binshtok A.M.
        • Wang H.
        • Zimmermann K.
        • Amaya F.
        • Vardeh D.
        • Shi L.
        • et al.
        Nociceptors are interleukin-1beta sensors.
        J Neurosci. 2008; 28: 14062-14073
        • Vincent T.L.
        IL-1 in osteoarthritis: time for a critical review of the literature.
        F1000Res. 2019; 8
        • Wu X.B.
        • Jing P.B.
        • Zhang Z.J.
        • Cao D.L.
        • Gao M.H.
        • Jiang B.C.
        • et al.
        Chemokine receptor CCR2 contributes to neuropathic pain and the associated depression via increasing NR2B-mediated currents in both D1 and D2 dopamine receptor-containing medium spiny neurons in the nucleus accumbens shell.
        Neuropsychopharmacology. 2018; 43: 2320-2330
        • Belkouch M.
        • Dansereau M.A.
        • Reaux-Le Goazigo A.
        • Van Steenwinckel J.
        • Beaudet N.
        • Chraibi A.
        • et al.
        The chemokine CCL2 increases Nav1.8 sodium channel activity in primary sensory neurons through a Gbetagamma-dependent mechanism.
        J Neurosci. 2011; 31: 18381-18390
        • Kao D.J.
        • Li A.H.
        • Chen J.C.
        • Luo R.S.
        • Chen Y.L.
        • Lu J.C.
        • et al.
        CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons.
        J Neuroinflammation. 2012; 9: 189
        • Dell'Isola A.
        • Allan R.
        • Smith S.L.
        • Marreiros S.S.
        • Steultjens M.
        Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature.
        BMC Muscoskel Disord. 2016; 17: 425
        • Deveza L.A.
        • Melo L.
        • Yamato T.P.
        • Mills K.
        • Ravi V.
        • Hunter D.J.
        Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review.
        Osteoarthritis Cartilage. 2017; 25: 1926-1941
        • Pan F.
        • Jones G.
        Clinical perspective on pain and pain phenotypes in osteoarthritis.
        Curr Rheumatol Rep. 2018; 20: 79
        • Cardoso J.S.
        • Riley 3rd, J.L.
        • Glover T.
        • Sibille K.T.
        • Bartley E.J.
        • Goodin B.R.
        • et al.
        Experimental pain phenotyping in community-dwelling individuals with knee osteoarthritis.
        Pain. 2016; 157: 2104-2114
        • Frey-Law L.A.
        • Bohr N.L.
        • Sluka K.A.
        • Herr K.
        • Clark C.R.
        • Noiseux N.O.
        • et al.
        Pain sensitivity profiles in patients with advanced knee osteoarthritis.
        Pain. 2016; 157: 1988-1999
        • Osgood E.
        • Trudeau J.J.
        • Eaton T.A.
        • Jensen M.P.
        • Gammaitoni A.
        • Simon L.S.
        • et al.
        Development of a bedside pain assessment kit for the classification of patients with osteoarthritis.
        Rheumatol Int. 2015; 35: 1005-1013
        • Wu C.L.
        • McNeill J.
        • Goon K.
        • Little D.
        • Kimmerling K.
        • Huebner J.
        • et al.
        Conditional macrophage depletion increases inflammation and does not inhibit the development of osteoarthritis in obese macrophage fas-induced apoptosis-transgenic mice.
        Arthritis Rheum. 2017; 69: 1772-1783
        • Culemann S.
        • Gruneboom A.
        • Nicolas-Avila J.A.
        • Weidner D.
        • Lammle K.F.
        • Rothe T.
        • et al.
        Locally renewing resident synovial macrophages provide a protective barrier for the joint.
        Nature. 2019; 572: 670-675
        • Hu Y.
        • Gui Z.
        • Zhou Y.
        • Xia L.
        • Lin K.
        • Xu Y.
        Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages.
        Free Radic Biol Med. 2019; 145: 146-160
        • Zhou F.
        • Mei J.
        • Yang S.
        • Han X.
        • Li H.
        • Yu Z.
        • et al.
        Modified ZIF-8 nanoparticles attenuate osteoarthritis by reprogramming the metabolic pathway of synovial macrophages.
        ACS Appl Mater Interfaces. 2020; 12: 2009-2022
        • Hsueh M.F.
        • Zhang X.
        • Wellman S.S.
        • Bolognesi M.P.
        • Kraus V.B.
        Synergistic roles of macrophages and neutrophils in osteoarthritis progression.
        Arthritis Rheum. 2021; 73: 89-99
        • Sun A.R.
        • Wu X.
        • Liu B.
        • Chen Y.
        • Armitage C.W.
        • Kollipara A.
        • et al.
        Pro-resolving lipid mediator ameliorates obesity induced osteoarthritis by regulating synovial macrophage polarisation.
        Sci Rep. 2019; 9: 426
        • Sun A.R.
        • Panchal S.K.
        • Friis T.
        • Sekar S.
        • Crawford R.
        • Brown L.
        • et al.
        Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis.
        PLoS One. 2017; 12e0183693
        • Sun A.R.
        • Friis T.
        • Sekar S.
        • Crawford R.
        • Xiao Y.
        • Prasadam I.
        Is synovial macrophage activation the inflammatory link between obesity and osteoarthritis?.
        Curr Rheumatol Rep. 2016; 18: 57
        • Zhang F.
        • Wei K.
        • Slowikowski K.
        • Fonseka C.Y.
        • Rao D.A.
        • Kelly S.
        • et al.
        Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry.
        Nat Immunol. 2019; 20: 928-942
        • Wood M.J.
        • Leckenby A.
        • Reynolds G.
        • Spiering R.
        • Pratt A.G.
        • Rankin K.S.
        • et al.
        Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients.
        JCI Insight. 2019; 4
        • Bart V.M.T.
        • Pickering R.J.
        • Taylor P.R.
        • Ipseiz N.
        Macrophage reprogramming for therapy.
        Immunology. 2021; 163: 128-144
        • Wang H.
        • Zhang H.
        • Fan K.
        • Zhang D.
        • Hu A.
        • Zeng X.
        • et al.
        Frugoside delays osteoarthritis progression via inhibiting miR-155-modulated synovial macrophage M1 polarisation.
        Rheumatology (Oxford). 2021 Oct 2; 60: 4899-4909
        • Wicks I.P.
        • Roberts A.W.
        Targeting GM-CSF in inflammatory diseases.
        Nat Rev Rheumatol. 2016; 12: 37-48
        • Hamilton J.A.
        GM-CSF in inflammation.
        J Exp Med. 2020; : 217
        • Lee M.C.
        • Saleh R.
        • Achuthan A.
        • Fleetwood A.J.
        • Forster I.
        • Hamilton J.A.
        • et al.
        CCL17 blockade as a therapy for osteoarthritis pain and disease.
        Arthritis Res Ther. 2018; 20: 62
        • Cook A.D.
        • Pobjoy J.
        • Steidl S.
        • Durr M.
        • Braine E.L.
        • Turner A.L.
        • et al.
        Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development.
        Arthritis Res Ther. 2012; 14: R199
        • Lee K.M.
        • Prasad V.
        • Achuthan A.
        • Fleetwood A.J.
        • Hamilton J.A.
        • Cook A.D.
        Targeting GM-CSF for collagenase-induced osteoarthritis pain and disease in mice.
        Osteoarthritis Cartilage. 2020; 28: 486-491
        • van Helvoort E.M.
        • Eijkelkamp N.
        • Lafeber F.
        • Mastbergen S.C.
        Expression of granulocyte macrophage-colony stimulating factor and its receptor in the synovium of osteoarthritis patients is negatively correlated with pain.
        Rheumatology (Oxford). 2020; 59: 3452-3457
        • Ni Z.
        • Kuang L.
        • Chen H.
        • Xie Y.
        • Zhang B.
        • Ouyang J.
        • et al.
        The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1beta production of macrophages and aggravated synovitis in osteoarthritis.
        Cell Death Dis. 2019; 10: 522
        • Lv Z.
        • Xu X.
        • Sun Z.
        • Yang Y.X.
        • Guo H.
        • Li J.
        • et al.
        TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca(2+)/CaMKII/Nrf2 signaling pathway.
        Cell Death Dis. 2021; 12: 504
        • Lu Y.
        • Liu L.
        • Pan J.
        • Luo B.
        • Zeng H.
        • Shao Y.
        • et al.
        MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-kappaB pathway.
        Cell Death Dis. 2021; 12: 533
        • Kim S.S.
        • Ye C.
        • Kumar P.
        • Chiu I.
        • Subramanya S.
        • Wu H.
        • et al.
        Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.
        Mol Ther. 2010; 18: 993-1001
        • Collins D.E.
        • Reuter J.D.
        • Rush H.G.
        • Villano J.S.
        Viral vector biosafety in laboratory animal research.
        Comp Med. 2017; 67: 215-221
        • Reichel D.
        • Tripathi M.
        • Perez J.M.
        Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment.
        Nanotheranostics. 2019; 3: 66-88
        • Moroni F.
        • Dwyer B.J.
        • Graham C.
        • Pass C.
        • Bailey L.
        • Ritchie L.
        • et al.
        Safety profile of autologous macrophage therapy for liver cirrhosis.
        Nat Med. 2019; 25: 1560-1565
        • Kong J.S.
        • Park J.H.
        • Yoo S.A.
        • Kim K.M.
        • Bae Y.J.
        • Park Y.J.
        • et al.
        Dynamic transcriptome analysis unveils key proresolving factors of chronic inflammatory arthritis.
        J Clin Invest. 2020; 130: 3974-3986
        • Jain S.
        • Tran T.H.
        • Amiji M.
        Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis.
        Biomaterials. 2015; 61: 162-177