Advertisement

Mitochondrial quality control in cartilage damage and osteoarthritis: new insights and potential therapeutic targets

  • D. Liu
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
  • Z.-J. Cai
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
  • Y.-T. Yang
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
  • W.-H. Lu
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
  • L.-Y. Pan
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
  • W.-F. Xiao
    Correspondence
    Address correspondence and reprint requests to: W.-F. Xiao, Department of Orthopedics, Xiangya Hospital of Central South University, Xiangya Road 87, Changsha 410008, Hunan, China. Tel.: 8613787043132; Fax: 86-0731-84327332.
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China

    National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
  • Y.-S. Li
    Correspondence
    Address correspondence and reprint requests to: Y.-S. Li, Department of Orthopedics, Xiangya Hospital of Central South University, Xiangya Road 87, Changsha 410008, Hunan, China. Tel.: 8613975889696; Fax: 86-0731-84327332.
    Affiliations
    Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China

    National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
    Search for articles by this author
Published:October 26, 2021DOI:https://doi.org/10.1016/j.joca.2021.10.009

      Summary

      Osteoarthritis (OA) is a multifactorial arthritic disease of weight-bearing joints concomitant with chronic and intolerable pain, loss of locomotion and impaired quality of life in the elderly population. Although the prevalence of OA increases with age, its specific mechanisms have not been elucidated and effective therapeutic disease-modifying drugs have not been developed. As essential organelles in chondrocytes, mitochondria supply energy and play vital roles in cellular metabolism, proliferation and apoptosis. Mitochondrial quality control (MQC) is the key mechanism to coordinate various mitochondrial biofunctions, primarily through mitochondrial biogenesis, dynamics, autophagy and the newly discovered mitocytosis. An increasing number of studies have revealed that a loss of MQC homeostasis contributes to the cartilage damage during the occurrence and development of OA. Several master MQC-associated signaling pathways and regulators exert chondroprotective roles in OA, while cartilage damage-related molecular mechanisms have been partially identified. In this review, we summarized known mechanisms mediated by dysregulated MQC in the pathogenesis of OA and latent bioactive ingredients and drugs for the prevention and treatment of OA through the maintenance of MQC.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Hunter D.J.
        • Bierma-Zeinstra S.
        Osteoarthritis.
        Lancet. 2019; 393: 1745-1759
      1. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.
        Lancet. 2017; 390: 1211-1259
        • Hunter D.J.
        • Schofield D.
        • Callander E.
        The individual and socioeconomic impact of osteoarthritis.
        Nat Rev Rheumatol. 2014; 10: 437-441
        • Martel-Pelletier J.
        • Barr A.J.
        • Cicuttini F.M.
        • Conaghan P.G.
        • Cooper C.
        • Goldring M.B.
        • et al.
        Osteoarthritis.
        Nat Rev Dis Primers. 2016; 2: 16072
        • Vinatier C.
        • Merceron C.
        • Guicheux J.
        Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options.
        Drug Discov Today. 2016; 21: 1932-1937
        • Ruiz Jr., D.
        • Koenig L.
        • Dall T.M.
        • Gallo P.
        • Narzikul A.
        • Parvizi J.
        • et al.
        The direct and indirect costs to society of treatment for end-stage knee osteoarthritis.
        J Bone Joint Surg Am. 2013; 95: 1473-1480
        • Higashi H.
        • Barendregt J.J.
        Cost-effectiveness of total hip and knee replacements for the Australian population with osteoarthritis: discrete-event simulation model.
        PLoS One. 2011; 6e25403
        • Friedman J.R.
        • Nunnari J.
        Mitochondrial form and function.
        Nature. 2014; 505: 335-343
        • Ruan L.
        • Wang Y.
        • Zhang X.
        • Tomaszewski A.
        • McNamara J.T.
        • Li R.
        Mitochondria-associated proteostasis.
        Annu Rev Biophys. 2020; 49: 41-67
        • Green D.R.
        • Van Houten B.
        SnapShot: mitochondrial quality control.
        Cell. 2011; 147: 950-950.e951
        • Suliman H.B.
        • Piantadosi C.A.
        Mitochondrial quality control as a therapeutic target.
        Pharmacol Rev. 2016; 68: 20-48
        • Blanco F.J.
        • Rego I.
        • Ruiz-Romero C.
        The role of mitochondria in osteoarthritis.
        Nat Rev Rheumatol. 2011; 7: 161-169
        • Blanco F.J.
        • June 2nd, R.K.
        Cartilage metabolism, mitochondria, and osteoarthritis.
        J Am Acad Orthop Surg. 2020; 28: e242-e244
        • Liu H.
        • Li Z.
        • Cao Y.
        • Cui Y.
        • Yang X.
        • Meng Z.
        • et al.
        Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: a possible pathway for osteoarthritis pathology at the subcellular level.
        Mol Med Rep. 2019; 20: 3308-3316
        • Blanco F.J.
        • Valdes A.M.
        • Rego-Pérez I.
        Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes.
        Nat Rev Rheumatol. 2018; 14: 327-340
        • López-Armada M.J.
        • Caramés B.
        • Martín M.A.
        • Cillero-Pastor B.
        • Lires-Dean M.
        • Fuentes-Boquete I.
        • et al.
        Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells.
        Osteoarthritis Cartilage. 2006; 14: 1011-1022
        • Vázquez-Mosquera M.E.
        • Fernández-Moreno M.
        • Cortés-Pereira E.
        • Relaño S.
        • Dalmao-Fernández A.
        • Ramos-Louro P.
        • et al.
        Oleate prevents palmitate-induced mitochondrial dysfunction in chondrocytes.
        Front Physiol. 2021; 12: 670753
        • Sun N.
        • Youle R.J.
        • Finkel T.
        The mitochondrial basis of aging.
        Mol Cell. 2016; 61: 654-666
        • Sun K.
        • Jing X.
        • Guo J.
        • Yao X.
        • Guo F.
        Mitophagy in degenerative joint diseases.
        Autophagy. 2021; 17: 2082-2092
        • Martin J.A.
        • Buckwalter J.A.
        Aging, articular cartilage chondrocyte senescence and osteoarthritis.
        Biogerontology. 2002; 3: 257-264
        • Grishko V.I.
        • Ho R.
        • Wilson G.L.
        • Pearsall AWt
        Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes.
        Osteoarthritis Cartilage. 2009; 17: 107-113
        • Kim J.
        • Xu M.
        • Xo R.
        • Mates A.
        • Wilson G.L.
        • Pearsall AWt
        • et al.
        Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes.
        Osteoarthritis Cartilage. 2010; 18: 424-432
        • Collins J.A.
        • Wood S.T.
        • Nelson K.J.
        • Rowe M.A.
        • Carlson C.S.
        • Chubinskaya S.
        • et al.
        Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes.
        J Biol Chem. 2016; 291: 6641-6654
        • Ruiz-Romero C.
        • López-Armada M.J.
        • Blanco F.J.
        Mitochondrial proteomic characterization of human normal articular chondrocytes.
        Osteoarthritis Cartilage. 2006; 14: 507-518
        • Ruiz-Romero C.
        • Calamia V.
        • Mateos J.
        • Carreira V.
        • Martínez-Gomariz M.
        • Fernández M.
        • et al.
        Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance.
        Mol Cell Proteomics. 2009; 8: 172-189
        • Picca A.
        • Lezza A.M.
        Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies.
        Mitochondrion. 2015; 25: 67-75
        • Kang C.
        • Li Ji L.
        Role of PGC-1α signaling in skeletal muscle health and disease.
        Ann N Y Acad Sci. 2012; 1271: 110-117
        • Ji L.L.
        • Kang C.
        Role of PGC-1α in sarcopenia: etiology and potential intervention - a mini-review.
        Gerontology. 2015; 61: 139-148
        • Rebelo A.P.
        • Dillon L.M.
        • Moraes C.T.
        Mitochondrial DNA transcription regulation and nucleoid organization.
        J Inherit Metab Dis. 2011; 34: 941-951
        • Salminen A.
        • Kaarniranta K.
        AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network.
        Ageing Res Rev. 2012; 11: 230-241
        • Herzig S.
        • Shaw R.J.
        AMPK: guardian of metabolism and mitochondrial homeostasis.
        Nat Rev Mol Cell Biol. 2018; 19: 121-135
        • Chang H.C.
        • Guarente L.
        SIRT1 and other sirtuins in metabolism.
        Trends Endocrinol Metabol. 2014; 25: 138-145
        • Zhao X.
        • Petursson F.
        • Viollet B.
        • Lotz M.
        • Terkeltaub R.
        • Liu-Bryan R.
        Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase.
        Arthritis Rheum. 2014; 66: 3073-3082
        • Li Y.
        • Xiao W.
        • Wu P.
        • Deng Z.
        • Zeng C.
        • Li H.
        • et al.
        The expression of SIRT1 in articular cartilage of patients with knee osteoarthritis and its correlation with disease severity.
        J Orthop Surg Res. 2016; 11: 144
        • Matsuzaki T.
        • Matsushita T.
        • Takayama K.
        • Matsumoto T.
        • Nishida K.
        • Kuroda R.
        • et al.
        Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice.
        Ann Rheum Dis. 2014; 73: 1397-1404
        • Batshon G.
        • Elayyan J.
        • Qiq O.
        • Reich E.
        • Ben-Aderet L.
        • Kandel L.
        • et al.
        Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence.
        Ann Rheum Dis. 2020; 79: 1370-1380
        • Terkeltaub R.
        • Yang B.
        • Lotz M.
        • Liu-Bryan R.
        Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1β and tumor necrosis factor α.
        Arthritis Rheum. 2011; 63: 1928-1937
        • Petursson F.
        • Husa M.
        • June R.
        • Lotz M.
        • Terkeltaub R.
        • Liu-Bryan R.
        Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes.
        Arthritis Res Ther. 2013; 15: R77
        • Wang J.
        • Li J.
        • Song D.
        • Ni J.
        • Ding M.
        • Huang J.
        • et al.
        AMPK: implications in osteoarthritis and therapeutic targets.
        Am J Transl Res. 2020; 12: 7670-7681
        • Wang Y.
        • Zhao X.
        • Lotz M.
        • Terkeltaub R.
        • Liu-Bryan R.
        Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α.
        Arthritis Rheum. 2015; 67: 2141-2153
        • He Y.
        • Wu Z.
        • Xu L.
        • Xu K.
        • Chen Z.
        • Ran J.
        • et al.
        The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis.
        Cell Mol Life Sci. 2020; 77: 3729-3743
        • Wang J.
        • Wang K.
        • Huang C.
        • Lin D.
        • Zhou Y.
        • Wu Y.
        • et al.
        SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis.
        Int J Biol Sci. 2018; 14: 1873-1882
        • Kong X.
        • Wang R.
        • Xue Y.
        • Liu X.
        • Zhang H.
        • Chen Y.
        • et al.
        Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis.
        PLoS One. 2010; 5e11707
        • Planavila A.
        • Iglesias R.
        • Giralt M.
        • Villarroya F.
        Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation.
        Cardiovasc Res. 2011; 90: 276-284
        • Satterstrom F.K.
        • Swindell W.R.
        • Laurent G.
        • Vyas S.
        • Bulyk M.L.
        • Haigis M.C.
        Nuclear respiratory factor 2 induces SIRT3 expression.
        Aging Cell. 2015; 14: 818-825
        • Soto-Hermida A.
        • Fernández-Moreno M.
        • Pértega-Díaz S.
        • Oreiro N.
        • Fernández-López C.
        • Blanco F.J.
        • et al.
        Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis.
        Rheumatol Int. 2015; 35: 337-344
        • Alvarez-Garcia O.
        • Matsuzaki T.
        • Olmer M.
        • Plate L.
        • Kelly J.W.
        • Lotz M.K.
        Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis.
        Arthritis Rheum. 2017; 69: 1418-1428
        • Wang L.
        • Shan H.
        • Wang B.
        • Wang N.
        • Zhou Z.
        • Pan C.
        • et al.
        Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats.
        Pharmacology. 2018; 102: 117-125
        • Masuda I.
        • Koike M.
        • Nakashima S.
        • Mizutani Y.
        • Ozawa Y.
        • Watanabe K.
        • et al.
        Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes.
        Sci Rep. 2018; 8: 7229
        • Qiu L.
        • Luo Y.
        • Chen X.
        Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats.
        Biomed Pharmacother. 2018; 103: 1585-1591
        • Hosseinzadeh A.
        • Jafari D.
        • Kamarul T.
        • Bagheri A.
        • Sharifi A.M.
        Evaluating the protective effects and mechanisms of diallyl disulfide on interlukin-1β-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes.
        J Cell Biochem. 2017; 118: 1879-1888
        • Wang C.
        • Gao Y.
        • Zhang Z.
        • Chi Q.
        • Liu Y.
        • Yang L.
        • et al.
        Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways.
        Phytomedicine. 2020; 78: 153305
        • Li J.
        • Zhang B.
        • Liu W.X.
        • Lu K.
        • Pan H.
        • Wang T.
        • et al.
        Metformin limits osteoarthritis development and progression through activation of AMPK signalling.
        Ann Rheum Dis. 2020; 79: 635-645
        • Westermann B.
        Mitochondrial fusion and fission in cell life and death.
        Nat Rev Mol Cell Biol. 2010; 11: 872-884
        • Archer S.L.
        Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.
        N Engl J Med. 2013; 369: 2236-2251
        • Youle R.J.
        • van der Bliek A.M.
        Mitochondrial fission, fusion, and stress.
        Science. 2012; 337: 1062-1065
        • Sesaki H.
        • Jensen R.E.
        Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape.
        J Cell Biol. 1999; 147: 699-706
        • Tilokani L.
        • Nagashima S.
        • Paupe V.
        • Prudent J.
        Mitochondrial dynamics: overview of molecular mechanisms.
        Essays Biochem. 2018; 62: 341-360
        • Hammerschmidt P.
        • Ostkotte D.
        • Nolte H.
        • Gerl M.J.
        • Jais A.
        • Brunner H.L.
        • et al.
        CerS6-Derived sphingolipids interact with Mff and promote mitochondrial fragmentation in obesity.
        Cell. 2019; 177: 1536-1552.e1523
        • Yu R.
        • Jin S.B.
        • Lendahl U.
        • Nistér M.
        • Zhao J.
        Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery.
        EMBO J. 2019; 38
        • Franco A.
        • Kitsis R.N.
        • Fleischer J.A.
        • Gavathiotis E.
        • Kornfeld O.S.
        • Gong G.
        • et al.
        Correcting mitochondrial fusion by manipulating mitofusin conformations.
        Nature. 2016; 540: 74-79
        • Blanco F.J.
        • Fernández-Moreno M.
        Mitochondrial biogenesis: a potential therapeutic target for osteoarthritis.
        Osteoarthritis Cartilage. 2020; 28: 1003-1006
        • Singh M.
        • Denny H.
        • Smith C.
        • Granados J.
        • Renden R.
        Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held.
        J Physiol. 2018; 596: 6263-6287
        • Lee H.
        • Yoon Y.
        Mitochondrial fission and fusion.
        Biochem Soc Trans. 2016; 44: 1725-1735
        • Shin H.J.
        • Park H.
        • Shin N.
        • Kwon H.H.
        • Yin Y.
        • Hwang J.A.
        • et al.
        Pink1-Mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis.
        J Clin Med. 2019; 8
        • Shi X.
        • Ye H.
        • Yao X.
        • Gao Y.
        The involvement and possible mechanism of NR4A1 in chondrocyte apoptosis during osteoarthritis.
        Am J Transl Res. 2017; 9: 746-754
        • Ryan S.M.
        • McMorrow J.
        • Umerska A.
        • Patel H.B.
        • Kornerup K.N.
        • Tajber L.
        • et al.
        An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis.
        J Contr Release. 2013; 167: 120-129
        • Zheng Z.
        • Xiang S.
        • Wang Y.
        • Dong Y.
        • Li Z.
        • Xiang Y.
        • et al.
        NR4A1 promotes TNF-α-induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway.
        Int J Mol Med. 2020; 45: 151-161
        • Wang B.
        • Shao Z.
        • Gu M.
        • Ni L.
        • Shi Y.
        • Yan Y.
        • et al.
        Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis.
        J Cell Physiol. 2021; 236: 4369-4386
        • Qi H.
        • Liu D.P.
        • Xiao D.W.
        • Tian D.C.
        • Su Y.W.
        • Jin S.F.
        Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways.
        In Vitro Cell Dev Biol Anim. 2019; 55: 203-210
        • Csaki C.
        • Mobasheri A.
        • Shakibaei M.
        Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.
        Arthritis Res Ther. 2009; 11: R165
        • Charlier E.
        • Relic B.
        • Deroyer C.
        • Malaise O.
        • Neuville S.
        • Collée J.
        • et al.
        Insights on molecular mechanisms of chondrocytes death in osteoarthritis.
        Int J Mol Sci. 2016; 17
        • Wang F.S.
        • Kuo C.W.
        • Ko J.Y.
        • Chen Y.S.
        • Wang S.Y.
        • Ke H.J.
        • et al.
        Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy.
        Antioxidants (Basel). 2020; 9
        • Yao X.
        • Zhang J.
        • Jing X.
        • Ye Y.
        • Guo J.
        • Sun K.
        • et al.
        Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission.
        Pharmacol Res. 2019; 139: 314-324
        • Wang C.
        • Yang Y.
        • Zhang Y.
        • Liu J.
        • Yao Z.
        • Zhang C.
        Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes.
        Biosci Trends. 2019; 12: 605-612
        • Li D.
        • Xie G.
        • Wang W.
        Reactive oxygen species: the 2-edged sword of osteoarthritis.
        Am J Med Sci. 2012; 344: 486-490
        • Henrotin Y.
        • Kurz B.
        • Aigner T.
        Oxygen and reactive oxygen species in cartilage degradation: friends or foes?.
        Osteoarthritis Cartilage. 2005; 13: 643-654
        • Maneiro E.
        • Martín M.A.
        • de Andres M.C.
        • López-Armada M.J.
        • Fernández-Sueiro J.L.
        • del Hoyo P.
        • et al.
        Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes.
        Arthritis Rheum. 2003; 48: 700-708
        • Liu J.T.
        • Guo X.
        • Ma W.J.
        • Zhang Y.G.
        • Xu P.
        • Yao J.F.
        • et al.
        Mitochondrial function is altered in articular chondrocytes of an endemic osteoarthritis, Kashin-Beck disease.
        Osteoarthritis Cartilage. 2010; 18: 1218-1226
        • Roach H.I.
        The complex pathology of osteoarthritis: even mitochondria are involved.
        Arthritis Rheum. 2008; 58: 2217-2218
        • Chen L.Y.
        • Wang Y.
        • Terkeltaub R.
        • Liu-Bryan R.
        Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function.
        Osteoarthritis Cartilage. 2018; 26: 1539-1550
        • Samant S.A.
        • Zhang H.J.
        • Hong Z.
        • Pillai V.B.
        • Sundaresan N.R.
        • Wolfgeher D.
        • et al.
        SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress.
        Mol Cell Biol. 2014; 34: 807-819
        • Zhou J.
        • Shi M.
        • Li M.
        • Cheng L.
        • Yang J.
        • Huang X.
        Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis.
        Cell Stress Chaperones. 2019; 24: 369-383
        • Ansari M.Y.
        • Ahmad N.
        • Voleti S.
        • Wase S.J.
        • Novak K.
        • Haqqi T.M.
        Mitochondrial dysfunction triggers a catabolic response in chondrocytes via ROS-mediated activation of the JNK/AP1 pathway.
        J Cell Sci. 2020; : 133
        • He T.
        • Wu D.
        • He L.
        • Wang X.
        • Yang B.
        • Li S.
        • et al.
        Casein kinase 1 epsilon facilitates cartilage destruction in osteoarthritis through JNK pathway.
        Faseb J. 2020; 34: 6466-6478
        • Elmazoglu Z.
        • Aydın Bek Z.
        • Saribas S.G.
        • Özoğul C.
        • Goker B.
        • Bitik B.
        • et al.
        S-allylcysteine inhibits chondrocyte inflammation to reduce human osteoarthritis via targeting RAGE, TLR4, JNK and Nrf2 signaling: comparison with colchicine.
        Biochem Cell Biol. 2021; 99: 645-654
        • Lu H.
        • Wang W.
        • Kang X.
        • Lin Z.
        • Pan J.
        • Cheng S.
        • et al.
        Hydrogen (H(2)) alleviates osteoarthritis by inhibiting apoptosis and inflammation via the JNK signaling pathway.
        J Inflamm Res. 2021; 14: 1387-1402
        • Pernas L.
        • Scorrano L.
        Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.
        Annu Rev Physiol. 2016; 78: 505-531
        • Filadi R.
        • Pendin D.
        • Pizzo P.
        Mitofusin 2: from functions to disease.
        Cell Death Dis. 2018; 9: 330
        • Xu L.
        • Wu Z.
        • He Y.
        • Chen Z.
        • Xu K.
        • Yu W.
        • et al.
        MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis.
        Osteoarthritis Cartilage. 2020; 28: 1079-1091
        • Burman J.L.
        • Pickles S.
        • Wang C.
        • Sekine S.
        • Vargas J.N.S.
        • Zhang Z.
        • et al.
        Mitochondrial fission facilitates the selective mitophagy of protein aggregates.
        J Cell Biol. 2017; 216: 3231-3247
        • Chen N.
        • Guo Z.
        • Luo Z.
        • Zheng F.
        • Shao W.
        • Yu G.
        • et al.
        Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage.
        Environ Pollut. 2021; 272: 116413
        • Choi A.M.
        • Ryter S.W.
        • Levine B.
        Autophagy in human health and disease.
        N Engl J Med. 2013; 368: 651-662
        • Xu K.
        • He Y.
        • Moqbel S.A.A.
        • Zhou X.
        • Wu L.
        • Bao J.
        SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway.
        Int J Biol Macromol. 2021; 175: 351-360
        • Duan R.
        • Xie H.
        • Liu Z.Z.
        The role of autophagy in osteoarthritis.
        Front Cell Dev Biol. 2020; 8: 608388
        • Chang J.
        • Wang W.
        • Zhang H.
        • Hu Y.
        • Wang M.
        • Yin Z.
        The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis.
        Int J Mol Med. 2013; 32: 1311-1318
        • Cheng N.T.
        • Meng H.
        • Ma L.F.
        • Zhang L.
        • Yu H.M.
        • Wang Z.Z.
        • et al.
        Role of autophagy in the progression of osteoarthritis: the autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis.
        Int J Mol Med. 2017; 39: 1224-1232
        • Lotz M.K.
        • Caramés B.
        Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA.
        Nat Rev Rheumatol. 2011; 7: 579-587
        • López de Figueroa P.
        • Lotz M.K.
        • Blanco F.J.
        • Caramés B.
        Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes.
        Arthritis Rheum. 2015; 67: 966-976
        • Ashrafi G.
        • Schwarz T.L.
        The pathways of mitophagy for quality control and clearance of mitochondria.
        Cell Death Differ. 2013; 20: 31-42
        • Pickles S.
        • Vigié P.
        • Youle R.J.
        Mitophagy and quality control mechanisms in mitochondrial maintenance.
        Curr Biol. 2018; 28: R170-r185
        • Sekine S.
        • Youle R.J.
        PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol.
        BMC Biol. 2018; 16: 2
        • Aguirre J.D.
        • Dunkerley K.M.
        • Mercier P.
        • Shaw G.S.
        Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
        Proc Natl Acad Sci U S A. 2017; 114: 298-303
        • Palikaras K.
        • Lionaki E.
        • Tavernarakis N.
        Mechanisms of mitophagy in cellular homeostasis, physiology and pathology.
        Nat Cell Biol. 2018; 20: 1013-1022
        • Brennan L.
        • Khoury J.
        • Kantorow M.
        Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure.
        Biochim Biophys Acta Mol Basis Dis. 2017; 1863: 21-32
        • Ansari M.Y.
        • Khan N.M.
        • Ahmad I.
        • Haqqi T.M.
        Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes.
        Osteoarthritis Cartilage. 2018; 26: 1087-1097
        • Akasaki Y.
        • Hasegawa A.
        • Saito M.
        • Asahara H.
        • Iwamoto Y.
        • Lotz M.K.
        Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis.
        Osteoarthritis Cartilage. 2014; 22: 162-170
        • Mammucari C.
        • Milan G.
        • Romanello V.
        • Masiero E.
        • Rudolf R.
        • Del Piccolo P.
        • et al.
        FoxO3 controls autophagy in skeletal muscle in vivo.
        Cell Metabol. 2007; 6: 458-471
        • Yu W.
        • Gao B.
        • Li N.
        • Wang J.
        • Qiu C.
        • Zhang G.
        • et al.
        Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy.
        Biochim Biophys Acta Mol Basis Dis. 2017; 1863: 1973-1983
        • Chen Y.
        • Wu Y.Y.
        • Si H.B.
        • Lu Y.R.
        • Shen B.
        Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis.
        Pharmacol Res. 2021; 166: 105497
        • Tang Q.
        • Zheng G.
        • Feng Z.
        • Chen Y.
        • Lou Y.
        • Wang C.
        • et al.
        Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development.
        Cell Death Dis. 2017; 8e3081
        • Hu S.
        • Zhang C.
        • Ni L.
        • Huang C.
        • Chen D.
        • Shi K.
        • et al.
        Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy.
        Cell Death Dis. 2020; 11: 481
        • Huang L.W.
        • Huang T.C.
        • Hu Y.C.
        • Hsieh B.S.
        • Chiu P.R.
        • Cheng H.L.
        • et al.
        Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy.
        Biochem Biophys Res Commun. 2020; 521: 50-56
        • Dalle Pezze P.
        • Ruf S.
        • Sonntag A.G.
        • Langelaar-Makkinje M.
        • Hall P.
        • Heberle A.M.
        • et al.
        A systems study reveals concurrent activation of AMPK and mTOR by amino acids.
        Nat Commun. 2016; 7: 13254
        • Zhang Y.
        • Vasheghani F.
        • Li Y.H.
        • Blati M.
        • Simeone K.
        • Fahmi H.
        • et al.
        Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis.
        Ann Rheum Dis. 2015; 74: 1432-1440
        • Sun K.
        • Luo J.
        • Guo J.
        • Yao X.
        • Jing X.
        • Guo F.
        The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review.
        Osteoarthritis Cartilage. 2020; 28: 400-409
        • Caramés B.
        • Hasegawa A.
        • Taniguchi N.
        • Miyaki S.
        • Blanco F.J.
        • Lotz M.
        Autophagy activation by rapamycin reduces severity of experimental osteoarthritis.
        Ann Rheum Dis. 2012; 71: 575-581
        • Zheng G.
        • Wang L.
        • Li X.
        • Niu X.
        • Xu G.
        • Lv P.
        Rapamycin alleviates cognitive impairment in murine vascular dementia: the enhancement of mitophagy by PI3K/AKT/mTOR axis.
        Tissue Cell. 2021; 69: 101481
        • Doblado L.
        • Lueck C.
        • Rey C.
        • Samhan-Arias A.K.
        • Prieto I.
        • Stacchiotti A.
        • et al.
        Mitophagy in human diseases.
        Int J Mol Sci. 2021; : 22
        • Ansari M.Y.
        • Ball H.C.
        • Wase S.J.
        • Novak K.
        • Haqqi T.M.
        Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of Cytochrome c.
        Osteoarthritis Cartilage. 2021; 29: 100-112
        • Jiao H.
        • Jiang D.
        • Hu X.
        • Du W.
        • Ji L.
        • Yang Y.
        • et al.
        Mitocytosis, a migrasome-mediated mitochondrial quality-control process.
        Cell. 2021; 184: 2896-2910.e2813
        • Ma L.
        • Li Y.
        • Peng J.
        • Wu D.
        • Zhao X.
        • Cui Y.
        • et al.
        Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration.
        Cell Res. 2015; 25: 24-38
        • Palikaras K.
        • Tavernarakis N.
        Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis.
        Exp Gerontol. 2014; 56: 182-188
        • Yun J.
        • Finkel T.
        Mitohormesis.
        Cell Metabol. 2014; 19: 757-766
        • Ma Q.
        Role of nrf2 in oxidative stress and toxicity.
        Annu Rev Pharmacol Toxicol. 2013; 53: 401-426
        • Schmeisser K.
        • Mansfeld J.
        • Kuhlow D.
        • Weimer S.
        • Priebe S.
        • Heiland I.
        • et al.
        Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide.
        Nat Chem Biol. 2013; 9: 693-700
        • St-Pierre J.
        • Drori S.
        • Uldry M.
        • Silvaggi J.M.
        • Rhee J.
        • Jäger S.
        • et al.
        Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.
        Cell. 2006; 127: 397-408
        • Torroni A.
        • Huoponen K.
        • Francalacci P.
        • Petrozzi M.
        • Morelli L.
        • Scozzari R.
        • et al.
        Classification of European mtDNAs from an analysis of three European populations.
        Genetics. 1996; 144: 1835-1850
        • Kenney M.C.
        • Chwa M.
        • Atilano S.R.
        • Falatoonzadeh P.
        • Ramirez C.
        • Malik D.
        • et al.
        Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions.
        Hum Mol Genet. 2014; 23: 3537-3551
        • Rego-Pérez I.
        • Fernández-Moreno M.
        • Fernández-López C.
        • Arenas J.
        • Blanco F.J.
        Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis.
        Arthritis Rheum. 2008; 58: 2387-2396
        • Rego I.
        • Fernández-Moreno M.
        • Fernández-López C.
        • Gómez-Reino J.J.
        • González A.
        • Arenas J.
        • et al.
        Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain.
        Ann Rheum Dis. 2010; 69: 210-213
        • Scotece M.
        • Rego-Pérez I.
        • Lechuga-Vieco A.V.
        • Cortés A.C.
        • Jiménez-Gómez M.C.
        • Filgueira-Fernández P.
        • et al.
        Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis.
        Sci Rep. 2021; 11: 9112
        • Lepetsos P.
        • Papavassiliou A.G.
        ROS/oxidative stress signaling in osteoarthritis.
        Biochim Biophys Acta. 2016; 1862: 576-591