Advertisement

OA foundations – experimental models of osteoarthritis

  • Author Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
    S. Zaki
    Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
    Affiliations
    Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia

    Raymond Purves Bone and Joint Research Laboratory, Australia
    Search for articles by this author
  • Author Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
    C.L. Blaker
    Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
    Affiliations
    Raymond Purves Bone and Joint Research Laboratory, Australia

    Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia
    Search for articles by this author
  • Author Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
    C.B. Little
    Correspondence
    Address correspondence and reprint requests to: C.B. Little, Raymond Purves Bone and Joint Research Laboratories, Level 10 Kolling Building – B6, Royal North Shore Hospital, St. Leonards, NSW, 065, Australia.
    Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
    Affiliations
    Raymond Purves Bone and Joint Research Laboratory, Australia
    Search for articles by this author
  • Author Footnotes
    a All authors contributed equally to the design, writing and editing of this paper.
Published:September 14, 2021DOI:https://doi.org/10.1016/j.joca.2021.03.024

      Summary

      Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype.
      This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research.
      The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hough Jr., A.
        The pathology of osteoarthritis.
        in: Moskowitz R. Goldberg V. Howell D. Osteoarthritis: Diagnosis and Medical/Surgical Management. WB Saunders Co, Philadelphia1999
        • Hartley A.
        • Hardcastle S.A.
        • Paternoster L.
        • McCloskey E.
        • Poole K.E.S.
        • Javaid M.K.
        • et al.
        Individuals with high bone mass have increased progression of radiographic and clinical features of knee osteoarthritis.
        Osteoarthr Cartil. 2020; 28: 1180-1190
        • Hunt E.R.
        • Villasanta-Tezanos A.G.
        • Butterfield T.A.
        • Lattermann C.
        • Jacobs C.A.
        Upregulation of systemic inflammatory pathways following anterior cruciate ligament injury relates to both cartilage and muscular changes: a pilot study.
        J Orthop Res. 2020; 38: 387-392
        • Jeon S.H.
        • Lee K.G.
        • Kim M.S.
        Association of bone mineral density with the development of knee osteoarthritis in men and women: a cross-sectional study using the fourth and fifth Korea national health and nutrition examination surveys.
        Arch Osteoporos. 2020; 15: 117
        • Kasher M.
        • Williams F.M.K.
        • Freidin M.B.
        • Cherny S.
        • Livshits G.
        An in-depth study of the associations between osteoarthritis- and osteoporosis-related phenotypes at different skeletal locations.
        Osteoporos Int. 2020; 31: 2197-2208
        • Pérez-Baos S.
        • Prieto-Potin I.
        • Román-Blas J.A.
        • Sánchez-Pernaute O.
        • Largo R.
        • Herrero-Beaumont G.
        Mediators and patterns of muscle loss in chronic systemic inflammation.
        Front Physiol. 2018; 9: 409
        • Aspden R.M.
        • Scheven B.A.
        • Hutchison J.D.
        Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism.
        Lancet. 2001; 357: 1118-1120
        • Teichtahl A.J.
        • Wang Y.
        • Wluka A.E.
        • Strauss B.J.
        • Proietto J.
        • Dixon J.B.
        • et al.
        Associations between systemic bone mineral density and early knee cartilage changes in middle-aged adults without clinical knee disease: a prospective cohort study.
        Arthritis Res Ther. 2017; 19: 98
        • Kraus V.B.
        • Blanco F.J.
        • Englund M.
        • Karsdal M.A.
        • Lohmander L.S.
        Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use.
        Osteoarthr Cartil. 2015; 23: 1233-1241
        • Johnson V.L.
        • Hunter D.J.
        The epidemiology of osteoarthritis.
        Best Pract Res Clin Rheumatol. 2014; 28: 5-15
        • Wang X.
        • Perry T.A.
        • Arden N.
        • Chen L.
        • Parsons C.M.
        • Cooper C.
        • et al.
        Occupational risk in knee osteoarthritis: a systematic review and meta-analysis of observational studies.
        Arthritis Care Res. 2020; 72: 1213-1223
        • Georgiev T.
        • Angelov A.K.
        Modifiable risk factors in knee osteoarthritis: treatment implications.
        Rheumatol Int. 2019; 39: 1145-1157
        • Cope P.J.
        • Ourradi K.
        • Li Y.
        • Sharif M.
        Models of osteoarthritis: the good, the bad and the promising.
        Osteoarthr Cartil. 2019; 27: 230-239
        • He Y.
        • Li Z.
        • Alexander P.G.
        • Ocasio-Nieves B.D.
        • Yocum L.
        • Lin H.
        • et al.
        Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models.
        Biology. 2020; 9: 194
        • Samvelyan H.J.
        • Hughes D.
        • Stevens C.
        • Staines K.A.
        Models of osteoarthritis: relevance and new insights.
        Calcif Tissue Int. 2021; 109: 243-256
        • Chakrabarti S.
        • Jadon D.R.
        • Bulmer D.C.
        • Smith E.S.J.
        Human osteoarthritic synovial fluid increases excitability of mouse dorsal root ganglion sensory neurons: an in-vitro translational model to study arthritic pain.
        Rheumatology. 2020; 59: 662-667
        • Flannery C.
        • Little C.
        • Hughes C.
        • Curtis C.
        • Caterson B.
        • Jones S.
        IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage.
        Matrix Biol. 2000; 19: 549-553
        • de Hooge A.S.
        • van de Loo F.A.
        • Bennink M.B.
        • Arntz O.J.
        • de Hooge P.
        • van den Berg W.B.
        Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging.
        Osteoarthr Cartil. 2005; 13: 66-73
        • Blaker C.L.
        • Clarke E.C.
        • Little C.B.
        Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis.
        J Orthop Res. 2017; 35: 424-439
        • Kuyinu E.L.
        • Narayanan G.
        • Nair L.S.
        • Laurencin C.T.
        Animal models of osteoarthritis: classification, update, and measurement of outcomes.
        J Orthop Surg Res. 2016; 11: 19
        • Little C.
        • Smith M.
        Animal models of osteoarthritis.
        Curr Rheumatol Rev. 2008; 4: 175-182
        • Little C.B.
        • Zaki S.
        What constitutes an "animal model of osteoarthritis"--the need for consensus?.
        Osteoarthr Cartil. 2012; 20: 261-267
        • Teeple E.
        • Jay G.D.
        • Elsaid K.A.
        • Fleming B.C.
        Animal models of osteoarthritis: challenges of model selection and analysis.
        AAPS J. 2013; 15: 438-446
        • Vincent T.L.
        • Williams R.O.
        • Maciewicz R.
        • Silman A.
        • Garside P.
        Mapping pathogenesis of arthritis through small animal models.
        Rheumatology. 2012; 51: 1931-1941
        • Little C.B.
        • Fosang A.J.
        Is cartilage matrix breakdown an appropriate therapeutic target in osteoarthritis--insights from studies of aggrecan and collagen proteolysis?.
        Curr Drug Targets. 2010; 11: 561-575
        • Little C.B.
        • Hunter D.J.
        Post-traumatic osteoarthritis: from mouse models to clinical trials.
        Nat Rev Rheumatol. 2013; 9: 485-497
        • Felson D.T.
        Developments in the clinical understanding of osteoarthritis.
        Arthritis Res Ther. 2009; 11: 203
        • O'Neill T.W.
        • Felson D.T.
        Mechanisms of osteoarthritis (OA) pain.
        Curr Osteoporos Rep. 2018; 16: 611-616
        • Roemer F.W.
        • Collins J.E.
        • Neogi T.
        • Crema M.D.
        • Guermazi A.
        Association of knee OA structural phenotypes to risk for progression: a secondary analysis from the Foundation for National Institutes of Health Osteoarthritis Biomarkers study (FNIH).
        Osteoarthr Cartil. 2020; 28: 1220-1228
        • Wang X.
        • Hunter D.J.
        • Jin X.
        • Ding C.
        The importance of synovial inflammation in osteoarthritis: current evidence from imaging assessments and clinical trials.
        Osteoarthr Cartil. 2018; 26: 165-174
        • Felson D.T.
        • Niu J.
        • Neogi T.
        • Goggins J.
        • Nevitt M.C.
        • Roemer F.
        • et al.
        Synovitis and the risk of knee osteoarthritis: the MOST Study.
        Osteoarthr Cartil. 2016; 24: 458-464
        • Foreman S.C.
        • Neumann J.
        • Joseph G.B.
        • Nevitt M.C.
        • McCulloch C.E.
        • Lane N.E.
        • et al.
        Longitudinal MRI structural findings observed in accelerated knee osteoarthritis: data from the osteoarthritis Initiative.
        Skeletal Radiol. 2019; 48: 1949-1959
        • Niu J.
        • Felson D.T.
        • Neogi T.
        • Nevitt M.C.
        • Guermazi A.
        • Roemer F.
        • et al.
        Patterns of coexisting lesions detected on magnetic resonance imaging and relationship to incident knee osteoarthritis: the multicenter osteoarthritis study.
        Arthritis Rheumatol. 2015; 67: 3158-3165
        • Roemer F.W.
        • Kwoh C.K.
        • Hannon M.J.
        • Hunter D.J.
        • Eckstein F.
        • Fujii T.
        • et al.
        What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative.
        Arthritis Rheumatol. 2015; 67: 2085-2096
        • Teichtahl A.J.
        • Cicuttini F.M.
        • Abram F.
        • Wang Y.
        • Pelletier J.P.
        • Dodin P.
        • et al.
        Meniscal extrusion and bone marrow lesions are associated with incident and progressive knee osteoarthritis.
        Osteoarthr Cartil. 2017; 25: 1076-1083
        • Goldring S.R.
        • Goldring M.B.
        Bone and cartilage in osteoarthritis: is what's best for one good or bad for the other?.
        Arthritis Res Ther. 2010; 12: 143
        • Zaki S.
        • Smith M.M.
        • Smith S.M.
        • Little C.B.
        Differential patterns of pathology in and interaction between joint tissues in long-term osteoarthritis with different initiating causes: phenotype matters.
        Osteoarthr Cartil. 2020; 28: 953-965
        • Malfait A.M.
        • Little C.B.
        On the predictive utility of animal models of osteoarthritis.
        Arthritis Res Ther. 2015; 17: 225
        • Malfait A.M.
        • Little C.B.
        • McDougall J.J.
        A commentary on modelling osteoarthritis pain in small animals.
        Osteoarthr Cartil. 2013; 21: 1316-1326
        • Driban J.B.
        • Sitler M.R.
        • Barbe M.F.
        • Balasubramanian E.
        Is osteoarthritis a heterogeneous disease that can be stratified into subsets?.
        Clin Rheumatol. 2010; 29: 123-131
        • Coutinho de Almeida R.
        • Mahfouz A.
        • Mei H.
        • Houtman E.
        • den Hollander W.
        • Soul J.
        • et al.
        Identification and characterization of two consistent osteoarthritis subtypes by transcriptome and clinical data integration.
        Rheumatology. 2021; 60: 1166-1175
        • Soul J.
        • Dunn S.L.
        • Anand S.
        • Serracino-Inglott F.
        • Schwartz J.M.
        • Boot-Handford R.P.
        • et al.
        Stratification of knee osteoarthritis: two major patient subgroups identified by genome-wide expression analysis of articular cartilage.
        Ann Rheum Dis. 2018; 77: 423
        • Rai M.F.
        • Patra D.
        • Sandell L.J.
        • Brophy R.H.
        Transcriptome analysis of injured human meniscus reveals a distinct phenotype of meniscus degeneration with aging.
        Arthritis Rheum. 2013; 65: 2090-2101
        • Rai M.F.
        • Tycksen E.D.
        • Cai L.
        • Yu J.
        • Wright R.W.
        • Brophy R.H.
        Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis.
        Osteoarthr Cartil. 2019; 27: 945-955
        • Deveza L.A.
        • Nelson A.E.
        • Loeser R.F.
        Phenotypes of osteoarthritis: current state and future implications.
        Clin Exp Rheumatol. 2019; 37: 64-72
        • Roman-Blas J.A.
        • Mendoza-Torres L.A.
        • Largo R.
        • Herrero-Beaumont G.
        Setting up distinctive outcome measures for each osteoarthritis phenotype.
        Ther Adv Musculoskelet Dis. 2020; 12 (1759720x20937966)
        • Carlesso L.C.
        • Segal N.A.
        • Frey-Law L.
        • Zhang Y.
        • Na L.
        • Nevitt M.
        • et al.
        Pain susceptibility phenotypes in those free of knee pain with or at risk of knee osteoarthritis: the multicenter osteoarthritis study.
        Arthritis Rheumatol. 2019; 71: 542-549
        • Conaghan P.G.
        Osteoarthritis in 2012: parallel evolution of OA phenotypes and therapies.
        Nat Rev Rheumatol. 2013; 9: 68-70
        • Dell'Isola A.
        • Allan R.
        • Smith S.L.
        • Marreiros S.S.
        • Steultjens M.
        Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature.
        BMC Musculoskelet Disord. 2016; 17: 425
        • Deveza L.A.
        • Melo L.
        • Yamato T.P.
        • Mills K.
        • Ravi V.
        • Hunter D.J.
        Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review.
        Osteoarthr Cartil. 2017; 25: 1926-1941
        • Karlsson M.K.
        • Karlsson C.
        • Magnusson H.
        • Coster M.
        • von Schewelov T.
        • Nilsson J.A.
        • et al.
        Individuals with primary osteoarthritis have different phenotypes depending on the affected joint - a case control study from southern Sweden including 514 participants.
        Open Orthop J. 2014; 8: 450-456
        • Soul J.
        • Barter M.J.
        • Little C.B.
        • Young D.A.
        OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals.
        Ann Rheum Dis. 2020; 80: 376-383
        • Loeser R.F.
        • Olex A.L.
        • McNulty M.A.
        • Carlson C.S.
        • Callahan M.F.
        • Ferguson C.M.
        • et al.
        Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice.
        Arthritis Rheum. 2012; 64: 705-717
        • Rai M.F.
        • Cheverud J.M.
        • Schmidt E.J.
        • Sandell L.J.
        Genetic correlations between cartilage regeneration and degeneration reveal an inverse relationship.
        Osteoarthr Cartil. 2020; 28: 1111-1120
        • Sebastian A.
        • Chang J.C.
        • Mendez M.E.
        • Murugesh D.K.
        • Hatsell S.
        • Economides A.N.
        • et al.
        Comparative transcriptomics identifies novel genes and pathways involved in post-traumatic osteoarthritis development and progression.
        Int J Mol Sci. 2018; 19
        • Ma H.L.
        • Blanchet T.J.
        • Peluso D.
        • Hopkins B.
        • Morris E.A.
        • Glasson S.S.
        Osteoarthritis severity is sex dependent in a surgical mouse model.
        Osteoarthr Cartil. 2007; 15: 695-700
        • Javaheri B.
        • Razi H.
        • Piles M.
        • de Souza R.
        • Chang Y.M.
        • Maric-Mur I.
        • et al.
        Sexually dimorphic tibia shape is linked to natural osteoarthritis in STR/Ort mice.
        Osteoarthr Cartil. 2018; 26: 807-817
        • Temp J.
        • Labuz D.
        • Negrete R.
        • Sunkara V.
        • Machelska H.
        Pain and knee damage in male and female mice in the medial meniscal transection-induced osteoarthritis.
        Osteoarthr Cartil. 2020; 28: 475-485
        • von Loga I.S.
        • Batchelor V.
        • Driscoll C.
        • Burleigh A.
        • Chia S.L.
        • Stott B.
        • et al.
        Does pain at an earlier stage of chondropathy protect female mice from structural progression after surgically induced osteoarthritis?.
        Arthritis Rheumatol. 2020; 72: 2083-2093
        • Maumus M.
        • Noël D.
        • Ea H.K.
        • Moulin D.
        • Ruiz M.
        • Hay E.
        • et al.
        Identification of TGFβ signatures in six murine models mimicking different osteoarthritis clinical phenotypes.
        Osteoarthr Cartil. 2020; 28: 1373-1384
        • Bateman J.F.
        • Rowley L.
        • Belluoccio D.
        • Chan B.
        • Bell K.
        • Fosang A.J.
        • et al.
        Transcriptomics of wild-type mice and mice lacking ADAMTS-5 activity identifies genes involved in osteoarthritis initiation and cartilage destruction.
        Arthritis Rheum. 2013; 65: 1547-1560
        • Kung L.H.W.
        • Ravi V.
        • Rowley L.
        • Angelucci C.
        • Fosang A.J.
        • Bell K.M.
        • et al.
        Cartilage MicroRNA dysregulation during the onset and progression of mouse osteoarthritis is independent of aggrecanolysis and overlaps with candidates from end-stage human disease.
        Arthritis Rheumatol. 2018; 70: 383-395
        • Kung L.H.W.
        • Ravi V.
        • Rowley L.
        • Bell K.M.
        • Little C.B.
        • Bateman J.F.
        Comprehensive expression analysis of microRNAs and mRNAs in synovial tissue from a mouse model of early post-traumatic osteoarthritis.
        Sci Rep. 2017; 7: 17701
        • Hunter D.J.
        • Little C.B.
        The great debate: should osteoarthritis research focus on "mice" or "men"?.
        Osteoarthr Cartil. 2016; 24: 4-8
        • Smith M.M.
        • Clarke E.C.
        • Little C.B.
        Considerations for the design and execution of protocols for animal research and treatment to improve reproducibility and standardization: "DEPART well-prepared and ARRIVE safely.
        Osteoarthr Cartil. 2017; 25: 354-363
        • Alonso Monteiro Bezerra M.
        • Hellwig N.
        • da Rocha Castelar Pinheiro G.
        • Souza Lopes C.
        Prevalence of chronic musculoskeletal conditions and associated factors in Brazilian adults - National Health Survey.
        BMC Publ Health. 2018; 18: 287
        • de Santos Machado V.
        • Valadares A.L.
        • Costa-Paiva L.H.
        • Osis M.J.
        • Sousa M.H.
        • Pinto-Neto A.M.
        Aging, obesity, and multimorbidity in women 50 years or older: a population-based study.
        Menopause. 2013; 20: 818-824
        • Guisado-Clavero M.
        • Roso-Llorach A.
        • Lopez-Jimenez T.
        • Pons-Vigues M.
        • Foguet-Boreu Q.
        • Munoz M.A.
        • et al.
        Multimorbidity patterns in the elderly: a prospective cohort study with cluster analysis.
        BMC Geriatr. 2018; 18: 16
        • Held F.P.
        • Blyth F.
        • Gnjidic D.
        • Hirani V.
        • Naganathan V.
        • Waite L.M.
        • et al.
        Association rules analysis of comorbidity and multimorbidity: the concord health and aging in men project.
        J Gerontol A Biol Sci Med Sci. 2016; 71: 625-631
        • Taylor C.J.
        • Harrison C.
        • Britt H.
        • Miller G.
        • Hobbs F.R.
        Heart failure and multimorbidity in Australian general practice.
        J Comorb. 2017; 7: 44-49
        • Xu X.
        • Mishra G.D.
        • Jones M.
        Evidence on multimorbidity from definition to intervention: an overview of systematic reviews.
        Ageing Res Rev. 2017; 37: 53-68
        • Marengoni A.
        • Rizzuto D.
        • Wang H.X.
        • Winblad B.
        • Fratiglioni L.
        Patterns of chronic multimorbidity in the elderly population.
        J Am Geriatr Soc. 2009; 57: 225-230
        • Yokota R.T.
        • Van der Heyden J.
        • Nusselder W.J.
        • Robine J.M.
        • Tafforeau J.
        • Deboosere P.
        • et al.
        Impact of chronic conditions and multimorbidity on the disability burden in the older population in Belgium.
        J Gerontol A Biol Sci Med Sci. 2016; 71: 903-909
        • Duffield S.J.
        • Ellis B.M.
        • Goodson N.
        • Walker-Bone K.
        • Conaghan P.G.
        • Margham T.
        • et al.
        The contribution of musculoskeletal disorders in multimorbidity: implications for practice and policy.
        Best Pract Res Clin Rheumatol. 2017; 31: 129-144
        • Losina E.
        • Walensky R.P.
        • Reichmann W.M.
        • Holt H.L.
        • Gerlovin H.
        • Solomon D.H.
        • et al.
        Impact of obesity and knee osteoarthritis on morbidity and mortality in older Americans.
        Ann Intern Med. 2011; 154: 217-226
        • van der Zee-Neuen A.
        • Putrik P.
        • Ramiro S.
        • Keszei A.
        • de Bie R.
        • Chorus A.
        • et al.
        Work outcome in persons with musculoskeletal diseases: comparison with other chronic diseases & the role of musculoskeletal diseases in multimorbidity.
        BMC Musculoskelet Disord. 2017; 18: 10
        • Vancampfort D.
        • Stubbs B.
        • Koyanagi A.
        Physical chronic conditions, multimorbidity and sedentary behavior amongst middle-aged and older adults in six low- and middle-income countries.
        Int J Behav Nutr Phys Act. 2017; 14: 147
        • Yasuda E.
        • Nakamura R.
        • Matsugi R.
        • Goto S.
        • Ikenaga Y.
        • Kuroda K.
        • et al.
        Association between the severity of symptomatic knee osteoarthritis and cumulative metabolic factors.
        Aging Clin Exp Res. 2018; 30: 481-488
        • Zambon S.
        • Siviero P.
        • Denkinger M.
        • Limongi F.
        • Victoria Castell M.
        • van der Pas S.
        • et al.
        Role of osteoarthritis, comorbidity, and pain in determining functional limitations in older populations: European project on osteoarthritis.
        Arthritis Care Res. 2016; 68 (Hoboken): 801-810
        • Damman W.
        • Liu R.
        • Kroon F.P.B.
        • Reijnierse M.
        • Huizinga T.W.J.
        • Rosendaal F.R.
        • et al.
        Do comorbidities play a role in hand osteoarthritis disease burden? Data from the hand osteoarthritis in secondary care cohort.
        J Rheumatol. 2017; 44: 1659-1666
        • Swain S.
        • Coupland C.
        • Mallen C.
        • Kuo C.F.
        • Sarmanova A.
        • Bierma-Zeinstra S.M.A.
        • et al.
        Temporal relationship between osteoarthritis and comorbidities: a combined case control and cohort study in the UK primary care setting.
        Rheumatology. 2021; 60 (Oxford): 4327-4339
        • de Visser H.M.
        • Mastbergen S.C.
        • Kozijn A.E.
        • Coeleveld K.
        • Pouran B.
        • van Rijen M.H.
        • et al.
        Metabolic dysregulation accelerates injury-induced joint degeneration, driven by local inflammation; an in vivo rat study.
        J Orthop Res. 2018; 36: 881-890
        • Griffin T.M.
        • Batushansky A.
        • Hudson J.
        • Lopes E.B.P.
        Correlation network analysis shows divergent effects of a long-term, high-fat diet and exercise on early stage osteoarthritis phenotypes in mice.
        J Sport Health Sci. 2020; 9: 119-131
        • Griffin T.M.
        • Fermor B.
        • Huebner J.L.
        • Kraus V.B.
        • Rodriguiz R.M.
        • Wetsel W.C.
        • et al.
        Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice.
        Arthritis Res Ther. 2010; 12 (R130-R130)
        • Kozijn A.E.
        • Gierman L.M.
        • van der Ham F.
        • Mulder P.
        • Morrison M.C.
        • Kuhnast S.
        • et al.
        Variable cartilage degradation in mice with diet-induced metabolic dysfunction: food for thought.
        Osteoarthr Cartil. 2018; 26: 95-107
        • Harasymowicz N.S.
        • Choi Y.R.
        • Wu C.L.
        • Iannucci L.
        • Tang R.
        • Guilak F.
        Intergenerational transmission of diet-induced obesity, metabolic imbalance, and osteoarthritis in mice.
        Arthritis Rheumatol. 2020; 72: 632-644
        • Dubey N.K.
        • Wei H.J.
        • Yu S.H.
        • Williams D.F.
        • Wang J.R.
        • Deng Y.H.
        • et al.
        Adipose-derived stem cells attenuates diabetic osteoarthritis via inhibition of glycation-mediated inflammatory cascade.
        Aging Dis. 2019; 10: 483-496
        • Kiyomoto K.
        • Iba K.
        • Hanaka M.
        • Ibe K.
        • Hayakawa H.
        • Teramoto A.
        • et al.
        High bone turnover state under osteoporotic changes induces pain-like behaviors in mild osteoarthritis model mice.
        J Bone Miner Metab. 2020; 38: 806-818
        • Funck-Brentano T.
        • Lin H.
        • Hay E.
        • Ah Kioon M.D.
        • Schiltz C.
        • Hannouche D.
        • et al.
        Targeting bone alleviates osteoarthritis in osteopenic mice and modulates cartilage catabolism.
        PLoS One. 2012; 7e33543
        • Ioannidis J.P.
        • Greenland S.
        • Hlatky M.A.
        • Khoury M.J.
        • Macleod M.R.
        • Moher D.
        • et al.
        Increasing value and reducing waste in research design, conduct, and analysis.
        Lancet. 2014; 383: 166-175
        • Macleod M.R.
        • Michie S.
        • Roberts I.
        • Dirnagl U.
        • Chalmers I.
        • Ioannidis J.P.
        • et al.
        Biomedical research: increasing value, reducing waste.
        Lancet. 2014; 383: 101-104
        • Percie du Sert N.
        Maximising the output of osteoarthritis research: the ARRIVE guidelines.
        Osteoarthr Cartil. 2012; 20: 253-255
        • Hooijmans C.R.
        • Leenaars M.
        • Ritskes-Hoitinga M.
        A gold standard publication checklist to improve the quality of animal studies, to fully integrate the Three Rs, and to make systematic reviews more feasible.
        Altern Lab Anim. 2010; 38: 167-182
        • Kilkenny C.
        • Browne W.J.
        • Cuthill I.C.
        • Emerson M.
        • Altman D.G.
        Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research.
        PLoS Biol. 2010; 8e1000412
        • Percie du Sert N.
        • Ahluwalia A.
        • Alam S.
        • Avey M.T.
        • Baker M.
        • Browne W.J.
        • et al.
        Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0.
        PLoS Biol. 2020; 18e3000411
        • Hooijmans C.R.
        • de Vries R.
        • Leenaars M.
        • Curfs J.
        • Ritskes-Hoitinga M.
        Improving planning, design, reporting and scientific quality of animal experiments by using the gold standard publication checklist, in addition to the ARRIVE guidelines.
        Br J Pharmacol. 2011; 162: 1259-1260
        • Smith A.J.
        • Clutton R.E.
        • Lilley E.
        • Hansen K.E.A.
        • Brattelid T.
        PREPARE: guidelines for planning animal research and testing.
        Lab Anim. 2018; 52: 135-141
        • Cressey D.
        Web tool aims to reduce flaws in animal studies.
        Nature. 2016; 531: 128
        • Glasson S.
        • Little C.
        The recent paper "Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilization of the medial meniscus and increased joint laxity.
        Osteoarthr Cartil. 2011; 19: 1076-1077
        • Aigner T.
        • Cook J.L.
        • Gerwin N.
        • Glasson S.S.
        • Laverty S.
        • Little C.B.
        • et al.
        Histopathology atlas of animal model systems - overview of guiding principles.
        Osteoarthr Cartil. 2010; 18: S2-S6
        • Cook J.
        • Kuroki K.
        • Visco D.
        • Pelletier J.-P.
        • Schulz L.
        • Lafeber F.
        The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the dog.
        Osteoarthr Cartil. 2010; 18: S66-S79
        • Gerwin N.
        • Bendele A.M.
        • Glasson S.
        • Carlson C.S.
        The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat.
        Osteoarthr Cartil. 2010; 18: S24-S34
        • Glasson S.S.
        • Chambers M.G.
        • Van Den Berg W.B.
        • Little C.B.
        The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse.
        Osteoarthr Cartil. 2010; 18: S17-S23
        • Kraus V.B.
        • Huebner J.L.
        • DeGroot J.
        • Bendele A.
        The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the Guinea pig.
        Osteoarthritis Cartilage. 2010; 18: S35-S52
        • Laverty S.
        • Girard C.
        • Williams J.
        • Hunziker E.B.
        • Pritzker K.
        The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the rabbit.
        Osteoarthr Cartil. 2010; 18: S53-S65
        • Little C.
        • Smith M.
        • Cake M.
        • Read R.
        • Murphy M.
        • Barry F.
        The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in sheep and goats.
        Osteoarthritis Cartilage. 2010; 18: S80-S92
        • McIlwraith C.
        • Frisbie D.
        • Kawcak C.
        • Fuller C.
        • Hurtig M.
        • Cruz A.
        The OARSI histopathology initiative–recommendations for histological assessments of osteoarthritis in the horse.
        Osteoarthr Cartil. 2010; 18: S93-S105
        • McNulty M.A.
        • Loeser R.F.
        • Davey C.
        • Callahan M.F.
        • Ferguson C.M.
        • Carlson C.S.
        Histopathology of naturally occurring and surgically induced osteoarthritis in mice.
        Osteoarthr Cartil. 2012; 20: 949-956
        • Armstrong A.R.
        • Carlson C.S.
        • Rendahl A.K.
        • Loeser R.F.
        Optimization of histologic grading schemes in spontaneous and surgically-induced murine models of osteoarthritis.
        Osteoarthr Cartil. 2021; 29: 536-546
        • Lim N.H.
        • Wen C.
        • Vincent T.L.
        Molecular and structural imaging in surgically induced murine osteoarthritis.
        Osteoarthr Cartil. 2020; 28: 874-884
        • de Sousa E.B.
        • Dos Santos G.C.J.
        • Duarte M.E.L.
        • Moura V.N.
        • Aguiar D.P.
        Metabolomics as a promising tool for early osteoarthritis diagnosis.
        Braz J Med Biol Res. 2017; 50: e6485
        • Mazor M.
        • Best T.M.
        • Cesaro A.
        • Lespessailles E.
        • Toumi H.
        Osteoarthritis biomarker responses and cartilage adaptation to exercise: a review of animal and human models.
        Scand J Med Sci Sports. 2019; 29: 1072-1082
        • Azadi M.
        • Nia H.T.
        • Gauci S.J.
        • Ortiz C.
        • Fosang A.J.
        • Grodzinsky A.J.
        Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse.
        J Biomech. 2016; 49: 1634-1640
        • Athanasiou K.A.
        • Rosenwasser M.P.
        • Buckwalter J.A.
        • Malinin T.I.
        • Mow V.C.
        Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage.
        J Orthop Res. 1991; 9: 330-340
        • Treppo S.
        • Koepp H.
        • Quan E.C.
        • Cole A.A.
        • Kuettner K.E.
        • Grodzinsky A.J.
        Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs.
        J Orthop Res. 2000; 18: 739-748
        • Blaker C.L.
        • Ashton D.M.
        • Doran N.
        • Little C.B.
        • Clarke E.C.
        Sex- and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis.
        J Biomech. 2021; 114: 110152
        • Chokhandre S.
        • Erdemir A.
        A comprehensive testing protocol for macro-scale mechanical characterization of knee articular cartilage with documented experimental repeatability.
        J Mech Behav Biomed Mater. 2020; 112: 104025
        • Lakes E.H.
        • Allen K.D.
        Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations.
        Osteoarthritis Cartilage. 2016; 24: 1837-1849
        • Halloran J.P.
        • Sibole S.
        • van Donkelaar C.C.
        • van Turnhout M.C.
        • Oomens C.W.
        • Weiss J.A.
        • et al.
        Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models.
        Ann Biomed Eng. 2012; 40: 2456-2474
        • Pizzolato C.
        • Lloyd D.G.
        • Sartori M.
        • Ceseracciu E.
        • Besier T.F.
        • Fregly B.J.
        • et al.
        CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
        J Biomech. 2015; 48: 3929-3936
        • Oloyede A.
        • Flachsmann R.
        • Broom N.D.
        The dramatic influence of loading velocity on the compressive response of articular cartilage.
        Connect Tissue Res. 1992; 27: 211-224
        • Cheng S.
        • Clarke E.C.
        • Bilston L.E.
        The effects of preconditioning strain on measured tissue properties.
        J Biomech. 2009; 42: 1360-1362
        • Jacobs B.Y.
        • Kloefkorn H.E.
        • Allen K.D.
        Gait analysis methods for rodent models of osteoarthritis.
        Curr Pain Headache Rep. 2014; 18: 456
        • Biewener A.A.
        Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size.
        J Exp Biol. 1983; 105: 147-171
        • Nilsson J.
        • Thorstensson A.
        Ground reaction forces at different speeds of human walking and running.
        Acta Physiol Scand. 1989; 136: 217-227
        • Vardeh D.
        • Mannion R.J.
        • Woolf C.J.
        Toward a mechanism-based approach to pain diagnosis.
        J Pain. 2016; 17: T50-T69
        • Sharkey M.
        The challenges of assessing osteoarthritis and postoperative pain in dogs.
        AAPS J. 2013; 15: 598-607
        • Piel M.J.
        • Kroin J.S.
        • van Wijnen A.J.
        • Kc R.
        • Im H.J.
        Pain assessment in animal models of osteoarthritis.
        Gene. 2014; 537: 184-188
        • O'Brien M.
        • Philpott H.T.
        • McDougall J.J.
        Understanding osteoarthritis pain through animal models.
        Clin Exp Rheumatol. 2017; 35: 47-52
        • Deuis J.R.
        • Dvorakova L.S.
        • Vetter I.
        Methods used to evaluate pain behaviors in rodents.
        Front Mol Neurosci. 2017; 10: 284
        • Rice A.S.
        • Cimino-Brown D.
        • Eisenach J.C.
        • Kontinen V.K.
        • Lacroix-Fralish M.L.
        • Machin I.
        • et al.
        Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards.
        Pain. 2008; 139: 243-247
        • Cobos E.J.
        • Portillo-Salido E.
        Bedside-to-Bench" behavioral outcomes in animal models of pain: beyond the evaluation of reflexes.
        Curr Neuropharmacol. 2013; 11: 560-591
        • Whiteside G.T.
        • Pomonis J.D.
        • Kennedy J.D.
        An industry perspective on the role and utility of animal models of pain in drug discovery.
        Neurosci Lett. 2013; 557 Pt A: 65-72
        • McCoy A.M.
        Animal models of osteoarthritis: comparisons and key considerations.
        Vet Pathol. 2015; 52: 803-818
        • Christiansen B.A.
        • Guilak F.
        • Lockwood K.A.
        • Olson S.A.
        • Pitsillides A.A.
        • Sandell L.J.
        • et al.
        Non-invasive mouse models of post-traumatic osteoarthritis.
        Osteoarthr Cartil. 2015; 23: 1627-1638
        • Proffen B.L.
        • McElfresh M.
        • Fleming B.C.
        • Murray M.M.
        A comparative anatomical study of the human knee and six animal species.
        Knee. 2012; 19: 493-499
        • Balbin M.
        • Fueyo A.
        • Knauper V.
        • Lopez J.M.
        • Alvarez J.
        • Sanchez L.M.
        • et al.
        Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation.
        J Biol Chem. 2001; 276: 10253-10262
        • Barry F.P.
        • Neame P.J.
        • Sasse J.
        • Pearson D.
        Length variation in the keratan sulfate domain of mammalian aggrecan.
        Matrix Biol. 1994; 14: 323-328
        • Ahern B.J.
        • Parvizi J.
        • Boston R.
        • Schaer T.P.
        Preclinical animal models in single site cartilage defect testing: a systematic review.
        Osteoarthr Cartil. 2009; 17: 705-713
        • Chu C.R.
        • Szczodry M.
        • Bruno S.
        Animal models for cartilage regeneration and repair.
        Tissue Eng Part B Rev. 2010; 16: 105-115
        • Eltawil N.M.
        • De Bari C.
        • Achan P.
        • Pitzalis C.
        • Dell'accio F.
        A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury.
        Osteoarthr Cartil. 2009; 17: 695-704
        • Lamuedra A.
        • Gratal P.
        • Calatrava L.
        • Ruiz-Perez V.L.
        • Largo R.
        • Herrero-Beaumont G.
        Disorganization of chondrocyte columns in the growth plate does not aggravate experimental osteoarthritis in mice.
        Sci Rep. 2020; 10: 10745
        • Little C.B.
        • Barai A.
        • Burkhardt D.
        • Smith S.M.
        • Fosang A.J.
        • Werb Z.
        • et al.
        Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development.
        Arthritis Rheum. 2009; 60: 3723-3733
        • Rai M.F.
        • Brophy R.H.
        • Rosen V.
        Molecular biology of meniscus pathology: lessons learned from translational studies and mouse models.
        J Orthop Res. 2020; 38: 1895-1904
        • Frisbie D.
        • Cross M.
        • McIlwraith C.
        A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee.
        Vet Comp Orthop Traumatol. 2006; 19: 142-146
        • Gupte C.
        • Bull A.
        • Murray R.
        • Amis A.
        Comparative anatomy of the meniscofemoral ligament in humans and some domestic mammals.
        Anat Histol Embryol. 2007; 36: 47-52
        • Giffin J.R.
        • Vogrin T.M.
        • Zantop T.
        • Woo S.L.
        • Harner C.D.
        Effects of increasing tibial slope on the biomechanics of the knee.
        Am J Sports Med. 2004; 32: 376-382
        • Fujita Y.
        • Hara Y.
        • Ochi H.
        • Nezu Y.
        • Harada Y.
        • Yogo T.
        • et al.
        The possible role of the tibial plateau angle for the severity of osteoarthritis in dogs with cranial cruciate ligament rupture.
        J Vet Med Sci. 2006; 68: 675-679
        • Wu C.-L.
        • Little D.
        Animal models of meniscal injury in post-traumatic arthritis.
        in: Olson M.D.S.A. Guilak P.F. Post-traumatic Arthritis: Pathogenesis, Diagnosis and Management. Springer US, Boston, MA2015: 41-62
        • Patil S.
        • Steklov N.
        • Song L.
        • Bae W.C.
        • D'Lima D.D.
        Comparative biomechanical analysis of human and caprine knee articular cartilage.
        Knee. 2014; 21: 119-125
        • Ozeki N.
        • Koga H.
        • Matsuda J.
        • Kohno Y.
        • Mizuno M.
        • Katano H.
        • et al.
        Biomechanical analysis of the centralization procedure for extruded lateral menisci with posterior root deficiency in a porcine model.
        J Orthop Sci. 2020; 25: 161-166
        • Ozeki N.
        • Muneta T.
        • Kawabata K.
        • Koga H.
        • Nakagawa Y.
        • Saito R.
        • et al.
        Centralization of extruded medial meniscus delays cartilage degeneration in rats.
        J Orthop Sci. 2017; 22: 542-548
        • Bendele A.
        Animal models of osteoarthritis.
        J Musculoskelet Neuronal Interact. 2001; 1: 363-376
        • Kumar D.
        • Manal K.T.
        • Rudolph K.S.
        Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis.
        Osteoarthr Cartil. 2013; 21: 298-305
        • Gushue D.L.
        • Houck J.
        • Lerner A.L.
        Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping.
        J Orthop Res. 2005; 23: 735-742
        • Hickman G.C.
        The mammalian tail: a review of functions.
        Mamm Rev. 1979; 9: 143-157
        • O’Connor S.M.
        • Dawson T.J.
        • Kram R.
        • Donelan J.M.
        The kangaroo’s tail propels and powers pentapedal locomotion.
        Biol Lett. 2014; 1020140381
        • Zhang X.
        • Gong J.
        • Yao Y.
        Effects of head and tail as swinging appendages on the dynamic walking performance of a quadruped robot.
        Robotica. 2016; 34: 2878
        • Cesana M.
        • Appleyard R.
        • Jones H.
        • Murrell G.
        The effect of chronic ACL deficiency on the secondary restraints of the knee: a Biomechanical Study in a Sheep model.
        Trans Orth Res Soc. 2003; 28: 803
        • Ho C.
        • Cervilla V.
        • Kjellin I.
        • Haghigi P.
        • Amiel D.
        • Trudell D.
        • et al.
        Magnetic resonance imaging in assessing cartilage changes in experimental osteoarthrosis of the knee.
        Invest Radiol. 1992; 27: 84-90
        • Rorvik A.M.
        • Teige J.
        Unstable stifles without clinical or radiographic osteoarthritis in young goats: an experimental study.
        Acta Vet Scand. 1996; 37: 265-272
        • Intema F.
        • Sniekers Y.H.
        • Weinans H.
        • Vianen M.E.
        • Yocum S.A.
        • Zuurmond A.M.
        • et al.
        Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis.
        J Bone Miner Res. 2010; 25: 1650-1657
        • Brandt K.D.
        Transection of the anterior cruciate ligament in the dog. A model of osteoarthritis.
        Semin Arthritis Rheum. 1991; 21: 22-32
        • Brandt K.D.
        Compensation and decompensation of articular cartilage in osteoarthritis.
        Agents Actions. 1993; 40: 232-234
        • Brandt K.D.
        • Braunstein E.M.
        • Visco D.M.
        • O'Connor B.
        • Heck D.
        • Albrecht M.
        Anterior (cranial) cruciate ligament transection in the dog - a bona-fide model of osteoarthritis, not merely of cartilage injury and repair.
        J Rheumatol. 1991; 18: 436-446
        • Brandt K.D.
        • Myers S.L.
        • Burr D.
        • Albrecht M.
        Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament.
        Arthritis Rheum. 1991; 34: 1560-1570
        • Glasson S.S.
        • Blanchet T.J.
        • Morris E.A.
        The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse.
        Osteoarthr Cartil. 2007; 15: 1061-1069
        • Poulet B.
        • Westerhof T.A.
        • Hamilton R.W.
        • Shefelbine S.J.
        • Pitsillides A.A.
        Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma.
        Osteoarthr Cartil. 2013; 21: 756-763
        • Angelo D.F.
        • Morouco P.
        • Monje Gil F.
        • Monico L.
        • Gonzalez-Garcia R.
        • Sousa R.
        • et al.
        Preclinical randomized controlled trial of bilateral discectomy versus bilateral discopexy in Black Merino sheep temporomandibular joint: TEMPOJIMS - phase 1- histologic, imaging and body weight results.
        J Cranio-Maxillo-Fac Surg. 2018; 46: 688-696
        • Kim J.S.
        • Ahmadinia K.
        • Li X.
        • Hamilton J.L.
        • Andrews S.
        • Haralampus C.A.
        • et al.
        Development of an experimental animal model for lower back pain by percutaneous injury-induced lumbar facet joint osteoarthritis.
        J Cell Physiol. 2015; 230: 2837-2847
        • Moore R.J.
        • Crotti T.N.
        • Osti O.L.
        • Fraser R.D.
        • Vernon-Roberts B.
        Osteoarthrosis of the facet joints resulting from anular rim lesions in sheep lumbar discs.
        Spine. 1999; 24: 519-525
        • Nakamura A.
        • Rampersaud Y.R.
        • Nakamura S.
        • Sharma A.
        • Zeng F.
        • Rossomacha E.
        • et al.
        microRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints.
        Ann Rheum Dis. 2019; 78: 111-121
        • Hu K.
        • Xu L.
        • Cao L.
        • Flahiff C.M.
        • Brussiau J.
        • Ho K.
        • et al.
        Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen.
        Arthritis Rheum. 2006; 54: 2891-2900
        • Boer C.G.
        • Yau M.S.
        • Rice S.J.
        • Coutinho de Almeida R.
        • Cheung K.
        • Styrkarsdottir U.
        • et al.
        Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify WNT9A as novel osteoarthritis gene.
        Ann Rheum Dis. 2020; 80: 367-375
        • Ängeby Möller K.
        • Klein S.
        • Seeliger F.
        • Finn A.
        • Stenfors C.
        • Svensson C.I.
        Monosodium iodoacetate-induced monoarthritis develops differently in knee versus ankle joint in rats.
        Neurobiol Pain. 2019; 6: 100036
        • Quasnichka H.L.
        • Anderson-MacKenzie J.M.
        • Bailey A.J.
        Subchondral bone and ligament changes precede cartilage degradation in Guinea pig osteoarthritis.
        Biorheology. 2006; 43: 389-397
        • Quasnichka H.L.
        • Anderson-MacKenzie J.M.
        • Tarlton J.F.
        • Sims T.J.
        • Billingham M.E.
        • Bailey A.J.
        Cruciate ligament laxity and femoral intercondylar notch narrowing in early-stage knee osteoarthritis.
        Arthritis Rheum. 2005; 52: 3100-3109
        • Kyostio-Moore S.
        • Nambiar B.
        • Hutto E.
        • Ewing P.J.
        • Piraino S.
        • Berthelette P.
        • et al.
        STR/ort mice, a model for spontaneous osteoarthritis, exhibit elevated levels of both local and systemic inflammatory markers.
        Comp Med. 2011; 61: 346-355
        • Uchida K.
        • Naruse K.
        • Satoh M.
        • Onuma K.
        • Ueno M.
        • Takano S.
        • et al.
        Increase of circulating CD11b(+)Gr1(+) cells and recruitment into the synovium in osteoarthritic mice with hyperlipidemia.
        Exp Anim. 2013; 62: 255-265
        • Uchida K.
        • Urabe K.
        • Naruse K.
        • Ogawa Z.
        • Mabuchi K.
        • Itoman M.
        Hyperlipidemia and hyperinsulinemia in the spontaneous osteoarthritis mouse model.
        STR/Ort. Exp Anim. 2009; 58: 181-187
        • Innes J.F.
        • Clegg P.
        Comparative rheumatology: what can be learnt from naturally occurring musculoskeletal disorders in domestic animals?.
        Rheumatology. 2010; 49: 1030-1039
        • Liu W.
        • Burton-Wurster N.
        • Glant T.T.
        • Tashman S.
        • Sumner D.R.
        • Kamath R.V.
        • et al.
        Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels.
        J Orthop Res. 2003; 21: 730-737
        • Blaker C.
        • Ebbeck M.
        • Shu C.
        • Clarke E.
        • Little C.
        Osteochondral pathology in murine models of anterior cruciate ligament injury: implications for the pathogenesis of osteoarthritis.
        Osteoarthr Cartil. 2019; 27: S186-S187
        • Blaker C.
        • Platzer H.
        • Shu C.
        • Clarke E.
        • Little C.
        Structural and molecular changes in the menisci of experimental models of post-traumatic osteoarthritis.
        Osteoarthr Cartil. 2019; 27: S480-S481
        • Fischenich K.M.
        • Button K.D.
        • DeCamp C.
        • Haut R.C.
        • Donahue T.L.H.
        Comparison of two models of post-traumatic osteoarthritis; temporal degradation of articular cartilage and menisci.
        J Orthop Res. 2017; 35: 486-495
        • Fischenich K.M.
        • Pauly H.M.
        • Button K.D.
        • Fajardo R.S.
        • DeCamp C.E.
        • Haut R.C.
        • et al.
        A study of acute and chronic tissue changes in surgical and traumatically-induced experimental models of knee joint injury using magnetic resonance imaging and micro-computed tomography.
        Osteoarthr Cartil. 2017; 25: 561-569
        • Maerz T.
        • Kurdziel M.
        • Newton M.
        • Altman P.
        • Anderson K.
        • Matthew H.
        • et al.
        Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic osteoarthritis.
        Osteoarthr Cartil. 2016; 24: 698-708
        • Maerz T.
        • Newton M.D.
        • Kurdziel M.D.
        • Altman P.
        • Anderson K.
        • Matthew H.W.T.
        • et al.
        Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical models of post-traumatic osteoarthritis.
        Osteoarthr Cartil. 2016; 24: 1918-1927
        • Redman S.N.
        • Dowthwaite G.P.
        • Thomson B.M.
        • Archer C.W.
        The cellular responses of articular cartilage to sharp and blunt trauma11Financial support: engineering and Physical Sciences Research Council (EPSRC) and Smith & Nephew Plc.
        Osteoarthr Cartil. 2004; 12: 106-116
        • Blaker C.L.
        • Little C.B.
        • Clarke E.C.
        Joint loads resulting in ACL rupture: effects of age, sex, and body mass on injury load and mode of failure in a mouse model.
        J Orthop Res. 2017; 35: 1754-1763
        • Lotz M.K.
        New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options.
        Arthritis Res Ther. 2010; 12: 211
        • Lockwood K.A.
        • Chu B.T.
        • Anderson M.J.
        • Haudenschild D.R.
        • Christiansen B.A.
        Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis.
        J Orthop Res. 2014; 32: 79-88
        • Salvarrey-Strati A.
        • Watson L.
        • Blanchet T.
        • Lu N.
        • Glasson S.S.
        The influence of enrichment devices on development of osteoarthritis in a surgically induced murine model.
        ILAR J. 2008; 49: 23-30
        • Schelbergen R.F.
        • van Dalen S.
        • ter Huurne M.
        • Roth J.
        • Vogl T.
        • Noel D.
        • et al.
        Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels.
        Osteoarthr Cartil. 2014; 22: 1158-1166
        • Zhang H.
        • Lin C.
        • Zeng C.
        • Wang Z.
        • Wang H.
        • Lu J.
        • et al.
        Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2.
        Ann Rheum Dis. 2018; 77: 1524-1534
        • Schelbergen R.F.
        • de Munter W.
        • van den Bosch M.H.
        • Lafeber F.P.
        • Sloetjes A.
        • Vogl T.
        • et al.
        Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis.
        Ann Rheum Dis. 2016; 75: 218-225
        • Im H.J.
        • Kim J.S.
        • Li X.
        • Kotwal N.
        • Sumner D.R.
        • van Wijnen A.J.
        • et al.
        Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model.
        Arthritis Rheum. 2010; 62: 2995-3005
        • Anderson M.J.
        • Diko S.
        • Baehr L.M.
        • Baar K.
        • Bodine S.C.
        • Christiansen B.A.
        Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.
        J Orthop Res. 2016; 34: 1680-1687
        • Christiansen B.A.
        • Anderson M.J.
        • Lee C.A.
        • Williams J.C.
        • Yik J.H.
        • Haudenschild D.R.
        Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis.
        Osteoarthr Cartil. 2012; 20: 773-782
        • Blaker C.L.
        • Clarke E.C.
        • Little C.B.
        Adding insult to injury: synergistic effect of combining risk-factors in models of post-traumatic osteoarthritis.
        Osteoarthr Cartil. 2019; 27: 1731-1734
        • King K.B.
        • Rosenthal A.K.
        The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms.
        Osteoarthr Cartil. 2015; 23: 841-850
        • Montgomery M.K.
        • Hallahan N.L.
        • Brown S.
        • Liu M.
        • Mitchell T.W.
        • Cooney G.J.
        • et al.
        Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding.
        Diabetologia. 2013; 56: 1129-1139
        • Arendt-Nielsen L.
        • Harris S.
        • Whiteside G.T.
        • Hummel M.
        • Knappenberger T.
        • OʼKeefe S.
        • et al.
        A randomized, double-blind, positive-controlled, 3-way cross-over human experimental pain study of a TRPV1 antagonist (V116517) in healthy volunteers and comparison with preclinical profile.
        Pain. 2016; 157: 2057-2067
        • Hummel M.
        • Whiteside G.T.
        Measuring and realizing the translational significance of preclinical in vivo studies of painful osteoarthritis.
        Osteoarthr Cartil. 2017; 25: 376-384
        • Whiteside G.T.
        • Pomonis J.D.
        • Kennedy J.D.
        Preclinical pharmacological approaches in drug discovery for chronic pain.
        Adv Pharmacol. 2016; 75: 303-323
        • Hotham W.E.
        • Henson F.M.D.
        The use of large animals to facilitate the process of MSC going from laboratory to patient-'bench to bedside.
        Cell Biol Toxicol. 2020; 36: 103-114
        • Meeson R.L.
        • Todhunter R.J.
        • Blunn G.
        • Nuki G.
        • Pitsillides A.A.
        Spontaneous dog osteoarthritis - a One Medicine vision.
        Nat Rev Rheumatol. 2019; 15: 273-287
        • Chiu K.W.
        • Hash J.
        • Meyers R.
        • Lascelles B.D.X.
        The effect of spontaneous osteoarthritis on conditioned pain modulation in the canine model.
        Sci Rep. 2020; 10: 1694
        • Hunt J.
        • Knazovicky D.
        • Lascelles B.D.X.
        • Murrell J.
        Quantitative sensory testing in dogs with painful disease: a window to pain mechanisms?.
        Vet J. 2019; 243: 33-41
        • Hunt J.R.
        • Goff M.
        • Jenkins H.
        • Harris J.
        • Knowles T.G.
        • Lascelles B.D.X.
        • et al.
        Electrophysiological characterisation of central sensitisation in canine spontaneous osteoarthritis.
        Pain. 2018; 159: 2318-2330
        • McIlwraith C.W.
        • Kawcak C.E.
        • Frisbie D.D.
        • Little C.B.
        • Clegg P.D.
        • Peffers M.J.
        • et al.
        Biomarkers for equine joint injury and osteoarthritis.
        J Orthop Res. 2018; 36: 823-831
        • Madry H.
        • Orth P.
        • Cucchiarini M.
        Gene therapy for cartilage repair.
        Cartilage. 2011; 2: 201-225
        • Dias I.R.
        • Viegas C.A.
        • Carvalho P.P.
        Large animal models for osteochondral regeneration.
        Adv Exp Med Biol. 2018; 1059: 441-501
        • Klinck M.P.
        • Mogil J.S.
        • Moreau M.
        • Lascelles B.D.X.
        • Flecknell P.A.
        • Poitte T.
        • et al.
        Translational pain assessment: could natural animal models be the missing link?.
        Pain. 2017; 158: 1633-1646
        • Stadig S.
        • Lascelles B.D.X.
        • Nyman G.
        • Bergh A.
        Evaluation and comparison of pain questionnaires for clinical screening of osteoarthritis in cats.
        Vet Rec. 2019; 185: 757
        • Walton M.B.
        • Cowderoy E.
        • Lascelles D.
        • Innes J.F.
        Evaluation of construct and criterion validity for the 'Liverpool Osteoarthritis in Dogs' (LOAD) clinical metrology instrument and comparison to two other instruments.
        PLoS One. 2013; 8e58125
        • Gruen M.E.
        • Dorman D.C.
        • Lascelles B.D.X.
        Caregiver placebo effect in analgesic clinical trials for cats with naturally occurring degenerative joint disease-associated pain.
        Vet Rec. 2017; 180: 473
        • Tellegen A.R.
        • Dessing A.J.
        • Houben K.
        • Riemers F.M.
        • Creemers L.B.
        • Mastbergen S.C.
        • et al.
        Dog as a model for osteoarthritis: the FGF4 retrogene insertion may matter.
        J Orthop Res. 2019; 37: 2550-2560
        • Thamm D.H.
        Canine cancer: strategies in experimental therapeutics.
        Front Oncol. 2019; 9: 1257
        • van der Weyden L.
        • Starkey M.
        • Abu-Helil B.
        • Mutsaers A.J.
        • Wood G.A.
        Companion canines: an under-utilised model to aid in translating anti-metastatics to the clinic.
        Clin Exp Metastasis. 2020; 37: 7-12
        • Gyles C.
        One medicine, one health, one world.
        Can Vet J. 2016; 57: 345-346
        • Mendez M.E.
        • Sebastian A.
        • Murugesh D.K.
        • Hum N.R.
        • McCool J.L.
        • Hsia A.W.
        • et al.
        LPS-induced inflammation prior to injury exacerbates the development of post-traumatic osteoarthritis in mice.
        J Bone Miner Res. 2020; 35: 2229-2241
        • Warmink K.
        • Kozijn A.E.
        • Bobeldijk I.
        • Stoop R.
        • Weinans H.
        • Korthagen N.M.
        High-fat feeding primes the mouse knee joint to develop osteoarthritis and pathologic infrapatellar fat pad changes after surgically induced injury.
        Osteoarthr Cartil. 2020; 28: 593-602
        • Kadri A.
        • Funck-Brentano T.
        • Lin H.
        • Ea H.K.
        • Hannouche D.
        • Marty C.
        • et al.
        Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling.
        Ann Rheum Dis. 2010; 69: 1533-1538
        • Yu D.G.
        • Yu B.
        • Mao Y.Q.
        • Zhao X.
        • Wang X.Q.
        • Ding H.F.
        • et al.
        Efficacy of zoledronic acid in treatment of teoarthritis is dependent on the disease progression stage in rat medial meniscal tear model.
        Acta Pharmacol Sin. 2012; 33: 924-934
        • Walker J.S.
        Anti-inflammatory effects of opioids.
        Adv Exp Med Biol. 2003; 521: 148-160
        • Young A.A.
        • Smith M.M.
        • Smith S.M.
        • Cake M.A.
        • Ghosh P.
        • Read R.A.
        • et al.
        Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis.
        Arthritis Res Ther. 2005; 7: R852-R861
        • Cake M.A.
        • Smith M.M.
        • Young A.A.
        • Smith S.M.
        • Ghosh P.
        • Read R.A.
        Synovial pathology in an ovine model of osteoarthritis: effect of intraarticular hyaluronan (Hyalgan).
        Clin Exp Rheumatol. 2008; 26: 561-567
        • Hooijmans C.R.
        • Rovers M.M.
        • de Vries R.B.M.
        • Leenaars M.
        • Ritskes-Hoitinga M.
        • Langendam M.W.
        SYRCLE's risk of bias tool for animal studies.
        BMC Med Res Methodol. 2014; 14: 43
        • Holman C.
        • Piper S.K.
        • Grittner U.
        • Diamantaras A.A.
        • Kimmelman J.
        • Siegerink B.
        • et al.
        Where have all the rodents gone? The effects of attrition in experimental research on cancer and stroke.
        PLoS Biol. 2016; 14e1002331
        • Schelbergen R.F.
        • Blom A.B.
        • van den Bosch M.H.
        • Sloetjes A.
        • Abdollahi-Roodsaz S.
        • Schreurs B.W.
        • et al.
        Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4.
        Arthritis Rheum. 2012; 64: 1477-1487
        • Schelbergen R.F.
        • Geven E.J.
        • van den Bosch M.H.
        • Eriksson H.
        • Leanderson T.
        • Vogl T.
        • et al.
        Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis.
        Ann Rheum Dis. 2015; 74: 2254-2258
        • Poulet B.
        • de Souza R.
        • Kent A.V.
        • Saxon L.
        • Barker O.
        • Wilson A.
        • et al.
        Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions.
        Osteoarthr Cartil. 2015; 23: 940-948
        • Nguyen T.G.
        • Little C.B.
        • Yenson V.M.
        • Jackson C.J.
        • McCracken S.A.
        • Warning J.
        • et al.
        Anti-IgD antibody attenuates collagen-induced arthritis by selectively depleting mature B-cells and promoting immune tolerance.
        J Autoimmun. 2010; 35: 86-97
        • Charan J.
        • Kantharia N.D.
        How to calculate sample size in animal studies?.
        J Pharmacol Pharmacother. 2013; 4: 303-306
        • Little C.
        Chapter 6: experimental models of OA.
        in: Henrotin Y. Hunter D. Kawaguchi H. OARSI Primer. 2011
        • Shomer N.H.
        • Holcombe H.
        • Harkness J.E.
        Chapter 6 - biology and diseases of Guinea pigs.
        in: Fox J.G. Anderson L.C. Otto G.M. Pritchett-Corning K.R. Whary M.T. Laboratory Animal Medicine. 3rd edn. Academic Press, Boston2015: 247-283
        • Chevrier A.
        • Kouao A.S.
        • Picard G.
        • Hurtig M.B.
        • Buschmann M.D.
        Interspecies comparison of subchondral bone properties important for cartilage repair.
        J Orthop Res. 2015; 33: 63-70
        • Monteiro B.P.
        • Otis C.
        • Del Castillo J.R.
        • Nitulescu R.
        • Brown K.
        • Arendt-Nielsen L.
        • et al.
        Quantitative sensory testing in feline osteoarthritic pain–a systematic review and meta-analysis.
        Osteoarthr Cartil. 2020; 28: 885-896
        • Macfadyen M.A.
        • Daniel Z.
        • Kelly S.
        • Parr T.
        • Brameld J.M.
        • Murton A.J.
        • et al.
        The commercial pig as a model of spontaneously-occurring osteoarthritis.
        BMC Muscoskel Disord. 2019; 20: 1-12
        • Popkin P.R.W.
        • Baker P.
        • Worley F.
        • Payne S.
        • Hammon A.
        The Sheep Project (1): determining skeletal growth, timing of epiphyseal fusion and morphometric variation in unimproved Shetland sheep of known age, sex, castration status and nutrition.
        J Archaeol Sci. 2012; 39: 1775-1792
        • Osterhoff G.
        • Löffler S.
        • Steinke H.
        • Feja C.
        • Josten C.
        • Hepp P.
        Comparative anatomical measurements of osseous structures in the ovine and human knee.
        Knee. 2011; 18: 98-103
        • Łuszczyński J.
        • Pieszka M.
        • Kosiniak-Kamysz K.
        Effect of horse breed and sex on growth rate and radiographic closure time of distal radial metaphyseal growth plate.
        Livest Sci. 2011; 141: 252-258
        • Kilborn S.H.
        • Trudel G.
        • Uhthoff H.
        Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals.
        JAALAS. 2002; 41: 21-26
        • Poole R.
        • Blake S.
        • Buschmann M.
        • Goldring S.
        • Laverty S.
        • Lockwood S.
        • et al.
        Recommendations for the use of preclinical models in the study and treatment of osteoarthritis.
        Osteoarthr Cartil. 2010; 18: S10-S16
        • Moran C.J.
        • Ramesh A.
        • Brama P.A.
        • O'Byrne J.M.
        • O'Brien F.J.
        • Levingstone T.J.
        The benefits and limitations of animal models for translational research in cartilage repair.
        J Exp Orthop. 2016; 3: 1
        • Ribitsch I.
        • Baptista P.M.
        • Lange-Consiglio A.
        • Melotti L.
        • Patruno M.
        • Jenner F.
        • et al.
        Large animal models in regenerative medicine and tissue engineering: to do or not to do.
        Front Bioeng Biotechnol. 2020; 8: 972
        • Gregory M.H.
        • Capito N.
        • Kuroki K.
        • Stoker A.M.
        • Cook J.L.
        • Sherman S.L.
        A review of translational animal models for knee osteoarthritis.
        Arthritis. 2012; 2012: 764621
        • Oláh T.
        • Cai X.
        • Michaelis J.C.
        • Madry H.
        Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part I: large animals.
        Ann Anat. 2021; 235: 151680
        • Oláh T.
        • Michaelis J.C.
        • Cai X.
        • Cucchiarini M.
        • Madry H.
        Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: small animals.
        Ann Anat. 2021; 234: 151630
        • Stoop R.
        • van der Kraan P.M.
        • Buma P.
        • Hollander A.P.
        • Billinghurst R.C.
        • Poole A.R.
        • et al.
        Type II collagen degradation in spontaneous osteoarthritis in C57Bl/6 and BALB/c mice.
        Arthritis Rheum. 1999; 42: 2381-2389
        • Bendele A.M.
        • White S.L.
        • Hulman J.F.
        Osteoarthrosis in Guinea pigs - histopathologic and scanning electron microscopic features.
        Lab Animal Sci. 1989; 39: 115-121
        • Carlson C.S.
        • Loeser R.F.
        • Jayo M.J.
        • Weaver D.S.
        • Adams M.R.
        • Jerome C.P.
        Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease.
        J Orthop Res. 1994; 12: 331-339
        • Carlson C.S.
        • Loeser R.F.
        • Purser C.B.
        • Gardin J.F.
        • Jerome C.P.
        Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease.
        J Bone Miner Res. 1996; 11: 1209-1217
        • Staines K.A.
        • Poulet B.
        • Wentworth D.N.
        • Pitsillides A.A.
        The STR/ort mouse model of spontaneous osteoarthritis - an update.
        Osteoarthr Cartil. 2017; 25: 802-808
        • Trumble T.
        • Scarbrough A.
        • Brown M.
        Osteochondral injury increases type II collagen degradation products (C2C) in synovial fluid of Thoroughbred racehorses.
        Osteoarthritis Cartilage. 2009; 17: 371-374
        • Olsewski J.
        • Lust G.
        • Rendano V.
        • Summers B.
        Degenerative joint disease: multiple joint involvement in young and mature dogs.
        Am J Vet Res. 1983; 44: 1300
        • Jimenez P.A.
        • Glasson S.S.
        • Trubetskoy O.V.
        • Haimes H.B.
        Spontaneous osteoarthritis in Dunkin Hartley Guinea pigs: histologic, radiologic, and biochemical changes.
        Comp Med. 1997; 47: 598-601
        • Helminen H.J.
        • Saamanen A.M.
        • Salminen H.
        • Hyttinen M.M.
        Transgenic mouse models for studying the role of cartilage macromolecules in osteoarthritis.
        Rheumatology. 2002; 41: 848-856
        • Fan N.
        • Lai L.
        Genetically modified pig models for human diseases.
        J Gene Genom. 2013; 40: 67-73
        • Glasson S.S.
        In vivo osteoarthritis target validation utilizing genetically-modified mice.
        Curr Drug Targets. 2007; 8: 367-376
        • Pond M.J.
        • Nuki G.
        Experimentally induced osteoarthritis in the dog.
        Ann Rheum Dis. 1973; 32: 387-388
        • Smith M.
        • Ghosh P.
        Experimental models of osteoarthritis.
        in: Moskowitz R. Howell D. Altman R. Buckwalter J. Goldberg M. Osteoarthritis. WB Saunders, Philadelphia2001: 171-199
        • Johnson K.A.
        • Francis D.J.
        • Manley P.A.
        • Chu Q.
        • Caterson B.
        Comparison of the effects of caudal pole hemi-meniscectomy and complete medial meniscectomy in the canine stifle joint.
        Am J Vet Res. 2004; 65: 1053-1060
        • Luther J.K.
        • Cook C.R.
        • Cook J.L.
        Meniscal release in cruciate ligament intact stifles causes lameness and medial compartment cartilage pathology in dogs 12 weeks postoperatively.
        Vet Surg. 2009; 38: 520-529
        • Smith M.
        • Little C.
        Experimental models of osteoarthritis.
        in: Moskowitz R. Altman R. Hochberg M. Buckwalter J. Goldberg V. Osteoarthitis: Diagnosis and Medical/Surgical Management. Lipincott Williams & Wilkins, Philadelphia2007: 107-125
        • Hulth A.
        • Lindberg L.
        • Telhag H.
        Experimental osteoarthritis in rabbits: preliminary report.
        Acta Orthop Scand. 1970; 41: 522-530
        • Kamekura S.
        • Hoshi K.
        • Shimoaka T.
        • Chung U.
        • Chikuda H.
        • Yamada T.
        • et al.
        Osteoarthritis development in novel experimental mouse models induced by knee joint instability.
        Osteoarthr Cartil. 2005; 13: 632-641
        • de Visser H.M.
        • Weinans H.
        • Coeleveld K.
        • van Rijen M.H.
        • Lafeber F.P.
        • Mastbergen S.C.
        Groove model of tibia-femoral osteoarthritis in the rat.
        J Orthop Res. 2017; 35: 496-505
        • Frost-Christensen L.N.
        • Mastbergen S.C.
        • Vianen M.E.
        • Hartog A.
        • DeGroot J.
        • Voorhout G.
        • et al.
        Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint.
        Osteoarthr Cartil. 2008; 16: 1327-1335
        • Intema F.
        • DeGroot J.
        • Elshof B.
        • Vianen M.E.
        • Yocum S.
        • Zuurmond A.
        • et al.
        The canine bilateral groove model of osteoarthritis.
        J Orthop Res. 2008; 26: 1471-1477
        • O'Connor B.L.
        • Palmoski M.J.
        • Brandt K.D.
        Neurogenic acceleration of degenerative joint lesions.
        J Bone Joint Surg Am. 1985; 67: 562-572
        • Nagelli C.V.
        • Cook J.L.
        • Kuroki K.
        • Bozynski C.
        • Ma R.
        • Hewett T.E.
        Does anterior cruciate ligament innervation matter for joint function and development of osteoarthritis?.
        J Knee Surg. 2017; 30: 364-371
        • Kondo E.
        • Yasuda K.
        • Yamanaka M.
        • Minami A.
        • Tohyama H.
        Effects of administration of exogenous growth factors on biomechanical properties of the elongation-type anterior cruciate ligament injury with partial laceration.
        Am J Sports Med. 2005; 33: 188-196
        • Lopez M.J.
        • Robinson S.O.
        • Quinn M.M.
        • Hosgood G.
        • Markel M.D.
        In vivo evaluation of intra-articular protection in a novel model of canine cranial cruciate ligament mid-substance elongation injury.
        Vet Surg. 2006; 35: 711-720
        • Cake M.A.
        • Read R.A.
        • Corfield G.
        • Daniel A.
        • Burkhardt D.
        • Smith M.M.
        • et al.
        Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep.
        Osteoarthr Cartil. 2013; 21: 226-236
        • Frisbie D.D.
        • Kawcak C.E.
        • Trotter G.W.
        • Powers B.E.
        • Walton R.M.
        • McIlwraith C.W.
        Effects of triamcinolone acetonide on an in vivo equine osteochondral fragment exercise model.
        Equine Vet J. 1997; 29: 349-359
        • Bolam C.J.
        • Hurtig M.B.
        • Cruz A.
        • McEwen B.J.
        Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses.
        Am J Vet Res. 2006; 67: 433-447
        • Radin E.L.
        • Ehrlich M.G.
        • Chernack R.
        • Abernethy P.
        • Paul I.L.
        • Rose R.M.
        Effect of repetitive impulsive loading on the knee joints of rabbits.
        Clin Orthop Relat Res. 1978; 131: 288-293
        • Radin E.L.
        • Martin R.B.
        • Burr D.B.
        • Caterson B.
        • Boyd R.D.
        • Goodwyn C.
        Effects of mechanical loading on the tissues of the rabbit knee.
        J Orthopaedic Res. 1984; 2: 221-234
        • Radin E.L.
        • Parker H.G.
        • Pugh J.W.
        • Steinberg R.S.
        • Paul I.L.
        • Rose R.M.
        Response of joints to impact loading—III: relationship between trabecular microfractures and cartilage degeneration.
        J Biomech. 1973; 6: 51-57
        • Thompson Jr., R.C.
        • Vener M.J.
        • Griffiths H.J.
        • Lewis J.L.
        • Oegema Jr., T.R.
        • Wallace L.
        Scanning electron-microscopic and magnetic resonance-imaging studies of injuries to the patellofemoral joint after acute transarticular loading.
        J Bone Joint Surg Am. 1993; 75: 704-713
        • Aune A.K.
        • Ekeland A.
        • Nordsletten L.
        Effect of quadriceps or hamstring contraction on the anterior shear force to anterior cruciate ligament failure:An in vivo study in the rat.
        Acta Orthop Scand. 1995; 66: 261-265
        • Fischenich K.M.
        • Button K.D.
        • Coatney G.A.
        • Fajardo R.S.
        • Leikert K.M.
        • Haut R.C.
        • et al.
        Chronic changes in the articular cartilage and meniscus following traumatic impact to the lapine knee.
        J Biomech. 2015; 48: 246-253
        • Killian M.L.
        • Isaac D.I.
        • Haut R.C.
        • Dejardin L.M.
        • Leetun D.
        • Donahue T.L.
        Traumatic anterior cruciate ligament tear and its implications on meniscal degradation: a preliminary novel lapine osteoarthritis model.
        J Surg Res. 2010; 164: 234-241
        • Kikuchi T.
        • Sakuta T.
        • Yamaguchi T.
        Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits.
        Osteoarthr Cartil. 1998; 6: 177-186
        • Kopp S.
        • Mejersjo C.
        • Clemensson E.
        Induction of osteoarthrosis in the Guinea pig knee by papain.
        Oral Surg Oral Med Oral Pathol. 1983; 55: 259-266
        • Neuhold L.A.
        • Killar L.
        • Zhao W.
        • Sung M.L.
        • Warner L.
        • Kulik J.
        • et al.
        Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice.
        J Clin Invest. 2001; 107: 35-44
        • Clements K.M.
        • Ball A.D.
        • Jones H.B.
        • Brinckmann S.
        • Read S.J.
        • Murray F.
        Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain.
        Osteoarthr Cartil. 2009; 17: 805-812
        • Barve R.A.
        • Minnerly J.C.
        • Weiss D.J.
        • Meyer D.M.
        • Aguiar D.J.
        • Sullivan P.M.
        • et al.
        Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental osteoarthritis in rats: relevance to human disease.
        Osteoarthr Cartil. 2007; 15: 1190-1198
        • van Beuningen H.M.
        • Glansbeek H.L.
        • van der Kraan P.M.
        • van den Berg W.B.
        Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections.
        Osteoarthr Cartil. 2000; 8: 25-33
        • Allen K.D.
        • Adams Jr., S.B.
        • Mata B.A.
        • Shamji M.F.
        • Gouze E.
        • Jing L.
        • et al.
        Gait and behavior in an IL1beta-mediated model of rat knee arthritis and effects of an IL1 antagonist.
        J Orthop Res. 2011; 29: 694-703
        • Ashraf S.
        • Mapp P.I.
        • Shahtaheri S.M.
        • Walsh D.A.
        Effects of carrageenan induced synovitis on joint damage and pain in a rat model of knee osteoarthritis.
        Osteoarthr Cartil. 2018; 26: 1369-1378
        • van den Berg W.B.
        • van Osch G.J.
        • van der Kraan P.M.
        • van Beuningen H.M.
        Cartilage destruction and osteophytes in instability-induced murine osteoarthritis: role of TGF beta in osteophyte formation?.
        Agents Actions. 1993; 40: 215-219
        • van der Kraan P.M.
        • Vitters E.L.
        • van Beuningen H.M.
        • van de Putte L.B.
        • van den Berg W.B.
        Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis.
        J Exp Pathol (Oxford). 1990; 71: 19-31
        • Sendzik J.
        • Lode H.
        • Stahlmann R.
        Quinolone-induced arthropathy: an update focusing on new mechanistic and clinical data.
        Int J Antimicrob Agents. 2009; 33: 194-200
        • Guingamp C.
        • Gegout-Pottie P.
        • Philippe L.
        • Terlain B.
        • Netter P.
        • Gillet P.
        Mono-iodoacetate-induced experimental osteoarthritis. A dose-response study of loss of mobility, morphology, and biochemistry.
        Arthritis Rheum: Official J Am Col Rheumatol. 1997; 40: 1670-1679
        • Lutz T.A.
        • Woods S.C.
        Overview of animal models of obesity.
        Curr Prot Pharmacol. 2012; (Chapter 5: Unit5.61-Unit65.61)
        • Collins K.H.
        • Herzog W.
        • MacDonald G.Z.
        • Reimer R.A.
        • Rios J.L.
        • Smith I.C.
        • et al.
        Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity.
        Front Physiol. 2018; 9: 112
        • Weiss R.E.
        • Gorn A.H.
        • Nimni M.E.
        Abnormalities in the biosynthesis of cartilage and bone proteoglycans in experimental diabetes.
        Diabetes. 1981; 30: 670-677
        • Adeyemi W.J.
        • Olayaki L.A.
        Diabetes escalates knee osteoarthritis in rats: evidence of adaptive mechanism.
        Environ Toxicol Pharmacol. 2018; 61: 1-7
        • Collins K.H.
        • Hart D.A.
        • Seerattan R.A.
        • Reimer R.A.
        • Herzog W.
        High-fat/high-sucrose diet-induced obesity results in joint-specific development of osteoarthritis-like degeneration in a rat model.
        Bone Joint Res. 2018; 7: 274-281
        • Bellido M.
        • Lugo L.
        • Roman-Blas J.A.
        • Castaneda S.
        • Caeiro J.R.
        • Dapia S.
        • et al.
        Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis.
        Arthritis Res Ther. 2010; 12: R152
        • Dai G.
        • Wang S.
        • Li J.
        • Liu C.
        • Liu Q.
        The validity of osteoarthritis model induced by bilateral ovariectomy in Guinea pig.
        J Huazhong Univ Sci Technolog Med Sci. 2006; 26: 716-719
        • Sniekers Y.H.
        • Weinans H.
        • Bierma-Zeinstra S.M.
        • van Leeuwen J.P.
        • van Osch G.J.
        Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment - a systematic approach.
        Osteoarthr Cartil. 2008; 16: 533-541
        • Sniekers Y.H.
        • Weinans H.
        • van Osch G.J.
        • van Leeuwen J.P.
        Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis.
        Arthritis Res Ther. 2010; 12: R182
        • Hoegh-Andersen P.
        • Tanko L.B.
        • Andersen T.L.
        • Lundberg C.V.
        • Mo J.A.
        • Heegaard A.M.
        • et al.
        Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application.
        Arthritis Res Ther. 2004; 6: R169-R180
        • Cake M.A.
        • Appleyard R.C.
        • Read R.A.
        • Smith M.M.
        • Murrell G.A.
        • Ghosh P.
        Ovariectomy alters the structural and biomechanical properties of ovine femoro-tibial articular cartilage and increases cartilage iNOS.
        Osteoarthr Cartil. 2005; 13: 1066-1075
        • Ham K.D.
        • Loeser R.F.
        • Lindgren B.R.
        • Carlson C.S.
        Effects of long-term estrogen replacement therapy on osteoarthritis severity in cynomolgus monkeys.
        Arthritis Rheum. 2002; 46: 1956-1964
        • Silberberg M.
        • Silberberg R.
        Effect of 17-ethyl-19-nortestosterone on articular aging and osteoarthrosis in orchiectomized mice.
        J Gerontol. 1961; 16: 20-24
        • Silberberg R.
        • Silberberg M.
        Male sex hormone and osteo-arthrosis in mice.
        JBJS. 1961; 43: 243-248
        • Ham K.D.
        • Oegema T.
        • Loeser R.
        • Carlson C.
        Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus monkeys.
        Osteoarthritis Cartilage. 2004; 12: 160-168
        • Sowers M.R.
        • McConnell D.
        • Jannausch M.
        • Buyuktur A.G.
        • Hochberg M.
        • Jamadar D.A.
        Estradiol and its metabolites and their association with knee osteoarthritis.
        Arthritis Rheum: Off J Am Col Rheumatol. 2006; 54: 2481-2487
        • Lapvetelainen T.
        • Hyttinen M.M.
        • Saamanen A.M.
        • Langsjo T.
        • Sahlman J.
        • Felszeghy S.
        • et al.
        Lifelong voluntary joint loading increases osteoarthritis in mice housing a deletion mutation in type II procollagen gene, and slightly also in non-transgenic mice.
        Ann Rheum Dis. 2002; 61: 810-817
        • Lapvetelainen T.
        • Nevalainen T.
        • Parkkinen J.J.
        • Arokoski J.
        • Kiraly K.
        • Hyttinen M.
        • et al.
        Lifelong moderate running training increases the incidence and severity of osteoarthritis in the knee joint of C57BL mice.
        Anat Rec. 1995; 242: 159-165
        • Armstrong S.J.
        • Read R.A.
        • Ghosh P.
        • Wilson D.M.
        Moderate exercise exacerbates the osteoarthritic lesions produced in cartilage by meniscectomy: a morphological study.
        Osteoarthr Cartil. 1993; 1: 89-96
        • Appleton C.T.
        • McErlain D.D.
        • Henry J.L.
        • Holdsworth D.W.
        • Beier F.
        Molecular and histological analysis of a new rat model of experimental knee osteoarthritis.
        Ann N Y Acad Sci. 2007; 1117: 165-174
        • Appleton C.T.
        • McErlain D.D.
        • Pitelka V.
        • Schwartz N.
        • Bernier S.M.
        • Henry J.L.
        • et al.
        Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis.
        Arthritis Res Ther. 2007; 9: R13
        • Galois L.
        • Etienne S.
        • Grossin L.
        • Watrin-Pinzano A.
        • Cournil-Henrionnet C.
        • Loeuille D.
        • et al.
        Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study.
        Osteoarthr Cartil. 2004; 12: 779-786
        • Arokoski J.
        • Kiviranta I.
        • Jurvelin J.
        • Tammi M.
        • Helminen H.J.
        Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs.
        Arthritis Rheum. 1993; 36: 1451-1459
        • Troyer H.
        The effect of short-term immobilization on the rabbit knee joint cartilage: a histochemical study.
        Clin Orthop. 1975; 107: 249-257
        • Langenskiold A.
        • Michelsson J.E.
        • Videman T.
        Osteoarthritis of the knee in the rabbit produced by immobilization. Attempts to achieve a reproducible model for studies on pathogenesis and therapy.
        Acta Orthop Scand. 1979; 50: 1-14
        • Videman T.
        Experimental osteoarthritis in the rabbit: comparison of different periods of repeated immobilization.
        Acta Orthop Scand. 1982; 53: 339-347
        • Jortikka M.O.
        • Inkinen R.I.
        • Tammi M.I.
        • Parkkinen J.J.
        • Haapala J.
        • Kiviranta I.
        • et al.
        Immobilisation causes longlasting matrix changes both in the immobilised and contralateral joint cartilage.
        Ann Rheum Dis. 1997; 56: 255-261
        • Tomiya M.
        • Fujikawa K.
        • Ichimura S.
        • Kikuchi T.
        • Yoshihara Y.
        • Nemoto K.
        Skeletal unloading induces a full-thickness patellar cartilage defect with increase of urinary collagen II CTx degradation marker in growing rats.
        Bone. 2009; 44: 295-305
        • Nishino T.
        • Chang F.
        • Ishii T.
        • Yanai T.
        • Mishima H.
        • Ochiai N.
        Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing.
        J Bone Joint Surg. Brit Vol. 2010; 92: 1033-1040