Osteoarthritis year in review 2020: imaging

  • F. Eckstein
    Correspondence
    Address correspondence and reprint requests to: F. Eckstein, Institute of Anatomy & Cell Biology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria. Tel: 43-699-144-20024.
    Affiliations
    Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria

    Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria

    Chondrometrics GmbH, Ainring, Germany
    Search for articles by this author
  • W. Wirth
    Affiliations
    Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria

    Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria

    Chondrometrics GmbH, Ainring, Germany
    Search for articles by this author
  • A.G. Culvenor
    Affiliations
    La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
    Search for articles by this author
Published:January 05, 2021DOI:https://doi.org/10.1016/j.joca.2020.12.019

      Summary

      This narrative “Year in Review” highlights a selection of articles published between January 2019 and April 2020, to be presented at the OARSI World Congress 2020 within the field of osteoarthritis (OA) imaging. Articles were obtained from a PubMed search covering the above period, utilizing a variety of relevant search terms. We then selected original and review studies on OA-related imaging in humans, particularly those with direct clinical relevance, with a focus on the knee. Topics selected encompassed clinically relevant models of early OA, particularly imaging applications on cruciate ligament rupture, as these are of direct clinical interest and provide potential opportunity to evaluate preventive therapy. Further, imaging applications on structural modification of articular tissues in patients with established OA, by non-pharmacological, pharmacological and surgical interventions are summarized. Finally, novel deep learning approaches to imaging are reviewed, as these facilitate implementation and scaling of quantitative imaging application in clinical trials and clinical practice. Methodological or observational studies outside these key focus areas were not included. Studies focused on biology, biomechanics, biomarkers, genetics and epigenetics, and clinical studies that did not contain an imaging component are covered in other articles within the OARSI “Year in Review” series. In conclusion, exciting progress has been made in clinically validating human models of early OA, and the field of automated articular tissue segmentation. Most importantly though, it has been shown that structure modification of articular cartilage is possible, and future research should focus on the translation of these structural findings to clinical benefit.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Osteoarthritis and Cartilage
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lohmander L.S.
        • Englund P.M.
        • Dahl L.L.
        • Roos E.M.
        The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
        Am J Sports Med. 2007; 35 (1552–3365 (Electronic)): 1756-1769
        • Culvenor A.G.
        • Collins N.J.
        • Guermazi A.
        • Cook J.L.
        • Vicenzino B.
        • Khan K.M.
        • et al.
        Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation.
        Arthritis Rheum. 2015; 67: 946-955https://doi.org/10.1002/art.39005
        • Culvenor A.G.
        • Øiestad B.E.
        • Hart H.F.
        • Stefanik J.J.
        • Guermazi A.
        • Crossley K.M.
        Prevalence of knee osteoarthritis features on magnetic resonance imaging in asymptomatic uninjured adults: a systematic review and meta-analysis.
        Br J Sports Med. 2019; 53: 1268-1278https://doi.org/10.1136/bjsports-2018-099257
        • Watt F.E.
        • Corp N.
        • Kingsbury S.R.
        • Frobell R.
        • Englund M.
        • Felson D.T.
        • et al.
        Towards prevention of post-traumatic osteoarthritis: report from an international expert working group on considerations for the design and conduct of interventional studies following acute knee injury.
        Osteoarthritis Cartilage. 2019; 27: 23-33https://doi.org/10.1016/j.joca.2018.08.001
        • Spector T.D.
        • Hart D.J.
        • Doyle D.V.
        Incidence and progression of osteoarthritis in women with unilateral knee disease in the general population: the effect of obesity.
        Ann Rheum Dis. 1994; 53: 565-568
        • Shakoor D.
        • Guermazi A.
        • Kijowski R.
        • Fritz J.
        • Roemer F.W.
        • Jalali-Farahani S.
        • et al.
        Cruciate ligament injuries of the knee: a meta-analysis of the diagnostic performance of 3D MRI.
        J Magn Reson Imag. 2019; 50: 1545-1560https://doi.org/10.1002/jmri.26713
        • Liu F.
        • Guan B.
        • Zhou Z.
        • Samsonov A.
        • Rosas H.
        • Lian K.
        • et al.
        Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning.
        Radiol Artif Intell. 2019; 1: 180091https://doi.org/10.1148/ryai.2019180091
        • Englander Z.A.
        • Garrett W.E.
        • Spritzer C.E.
        • DeFrate L.E.
        In vivo attachment site to attachment site length and strain of the ACL and its bundles during the full gait cycle measured by MRI and high-speed biplanar radiography.
        J Biomech. 2020; 98https://doi.org/10.1016/j.jbiomech.2019.109443
        • Anz A.W.
        • Edison J.
        • Denney T.S.
        • Branch E.A.
        • Walz C.R.
        • Brock K.V.
        • et al.
        3-T MRI mapping is a valid in vivo method of quantitatively evaluating the anterior cruciate ligament: rater reliability and comparison across age.
        Skeletal Radiol. 2020; 49: 443-452https://doi.org/10.1007/s00256-019-03301-1
        • Niki Y.
        • Yasuoka T.
        • Kobayashi S.
        • Harato K.
        • Nagura T.
        • Okuda S.
        • et al.
        Feasibility of T1rho and T2 map magnetic resonance imaging for evaluating graft maturation after anatomic double-bundle anterior cruciate ligament reconstruction.
        J Orthop Surg Res. 2019; 14https://doi.org/10.1186/s13018-019-1193-y
        • Hollnagel K.
        • Johnson B.M.
        • Whitmer K.K.
        • Hanna A.
        • Miller T.K.
        Prediction of autograft hamstring size for anterior cruciate ligament reconstruction using MRI.
        Clin Orthop Relat Res. 2019; 477: 2677-2684https://doi.org/10.1097/CORR.0000000000000952
        • Lonza G.C.
        • Gardner-Morse M.G.
        • Vacek P.M.
        • Beynnon B.D.
        Radiographic-based measurement of tibiofemoral joint space width and magnetic resonance imaging derived articular cartilage thickness are not related in subjects at risk for post traumatic arthritis of the knee.
        J Orthop Res. 2019; 37: 1052-1058https://doi.org/10.1002/jor.24283
        • Snoj Ž
        • Vidmar J.
        • Gergar M.
        • Plut D.
        • Salapura V.
        T2 distribution profiles are a good way to show cartilage regional variabilities and cartilage insufficiency.
        Skeletal Radiol. 2020; 49: 137-145https://doi.org/10.1007/s00256-019-03256-3
        • Ushio T.
        • Okazaki K.
        • Osaki K.
        • Takayama Y.
        • Sagiyama K.
        • Mizu-Uchi H.
        • et al.
        Degenerative changes in cartilage likely occur in the medial compartment after anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 3567-3574https://doi.org/10.1007/s00167-019-05468-5
        • Williams A.A.
        • Titchenal M.R.
        • Do B.H.
        • Guha A.
        • Chu C.R.
        MRI UTE-T2∗ shows high incidence of cartilage subsurface matrix changes 2 years after ACL reconstruction.
        J Orthop Res. 2019; 37: 370-377https://doi.org/10.1002/jor.24110
        • Ithurburn M.P.
        • Zbojniewicz A.M.
        • Thomas S.
        • Evans K.D.
        • Pennell M.L.
        • Magnussen R.A.
        • et al.
        Lower patient-reported function at 2 years is associated with elevated knee cartilage T1rho and T2 relaxation times at 5 years in young athletes after ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2643-2652https://doi.org/10.1007/s00167-018-5291-x
        • Tjörnstrand J.
        • Neuman P.
        • Svensson J.
        • Lundin B.
        • Dahlberg L.E.
        • Tiderius C.J.
        Osteoarthritis development related to cartilage quality-the prognostic value of dGEMRIC after anterior cruciate ligament injury.
        Osteoarthritis Cartilage. 2019; 27: 1647-1652https://doi.org/10.1016/j.joca.2019.06.012
        • Markes A.R.
        • Knox J.
        • Zhong Q.
        • Pedoia V.
        • Li X.
        • Ma C.B.
        An abnormal tibial position is associated with alterations in the meniscal matrix: a 3-year longitudinal study after anterior cruciate ligament reconstruction.
        Orthop J Sport Med. 2019; 7 (2325967118820057)https://doi.org/10.1177/2325967118820057
        • Messer D.J.
        • Shield A.J.
        • Williams M.D.
        • Timmins R.G.
        • Bourne M.N.
        Hamstring muscle activation and morphology are significantly altered 1-6 years after anterior cruciate ligament reconstruction with semitendinosus graft.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 733-741https://doi.org/10.1007/s00167-019-05374-w
        • Kroker A.
        • Besler B.A.
        • Bhatla J.L.
        • Shtil M.
        • Salat P.
        • Mohtadi N.
        • et al.
        Longitudinal effects of acute anterior cruciate ligament tears on peri-articular bone in human knees within the first year of injury.
        J Orthop Res. 2019; 37: 2325-2336https://doi.org/10.1002/jor.24410
        • Struglics A.
        • Turkiewicz A.
        • Larsson S.
        • Lohmander L.S.
        • Roemer F.W.
        • Frobell R.
        • et al.
        Molecular and imaging biomarkers of local inflammation at 2 years after anterior cruciate ligament injury do not associate with patient reported outcomes at 5 years.
        Osteoarthritis Cartilage. 2020; 28: 356-362https://doi.org/10.1016/j.joca.2019.12.010
        • Roemer F.W.
        • Englund M.
        • Turkiewicz A.
        • Struglics A.
        • Guermazi A.
        • Lohmander L.S.
        • et al.
        Molecular and structural biomarkers of inflammation at two years after acute anterior cruciate ligament injury do not predict structural knee osteoarthritis at five years.
        Arthritis Rheum. 2019; 71: 238-243https://doi.org/10.1002/art.40687
        • Zhong Q.
        • Pedoia V.
        • Tanaka M.
        • Neumann J.
        • Link T.M.
        • Ma B.
        • et al.
        3D bone-shape changes and their correlations with cartilage T1ρ and T2 relaxation times and patient-reported outcomes over 3-years after ACL reconstruction.
        Osteoarthritis Cartilage. 2019; 27: 915-921https://doi.org/10.1016/j.joca.2019.01.017
        • Grassi A.
        • Macchiarola L.
        • Urrizola Barrientos F.
        • Zicaro J.P.
        • Costa Paz M.
        • Adravanti P.
        • et al.
        Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study.
        Am J Sports Med. 2019; 47: 285-295https://doi.org/10.1177/0363546518823544
        • Bastos R.
        • Andrade R.
        • Vasta S.
        • Pereira R.
        • Papalia R.
        • van der Merwe W.
        • et al.
        Tibiofemoral bone bruise volume is not associated with meniscal injury and knee laxity in patients with anterior cruciate ligament rupture.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 3318-3326https://doi.org/10.1007/s00167-018-5343-2
        • Erhart-Hledik J.
        • Chu C.
        • Asay J.
        • Favre J.
        • Andriacchi T.
        Longitudinal changes in the total knee joint moment after anterior cruciate ligament reconstruction correlate with cartilage thickness changes.
        J Orthop Res. 2019; 37: 1546-1554https://doi.org/10.1002/jor.24295
        • Sritharan P.
        • Schache A.G.
        • Culvenor A.G.
        • Perraton L.G.
        • Bryant A.L.
        • Crossley K.M.
        Between-limb differences in patellofemoral joint forces during running at 12 to 24 Months after unilateral anterior cruciate ligament reconstruction.
        Am J Sports Med. 2020; 48: 1711-1719https://doi.org/10.1177/0363546520914628
        • Pfeiffer S.J.
        • Spang J.
        • Nissman D.
        • Lalush D.
        • Wallace K.
        • Harkey M.S.
        • et al.
        Gait mechanics and T1ρ MRI of tibiofemoral cartilage 6 Months after ACL reconstruction.
        Med Sci Sports Exerc. 2019; 51: 630-639https://doi.org/10.1249/MSS.0000000000001834
        • Li A.K.
        • Pedoia V.
        • Tanaka M.
        • Souza R.B.
        • Ma C.B.
        • Li X.
        Six-month post-surgical elevations in cartilage T1rho relaxation times are associated with functional performance 2 years after ACL reconstruction.
        J Orthop Res. 2020; 38: 1132-1140https://doi.org/10.1002/jor.24544
        • Sutter E.G.
        • Liu B.
        • Utturkar G.M.
        • Widmyer M.R.
        • Spritzer C.E.
        • Cutcliffe H.C.
        • et al.
        Effects of anterior cruciate ligament deficiency on tibiofemoral cartilage thickness and strains in response to hopping.
        Am J Sports Med. 2019; 47: 96-103https://doi.org/10.1177/0363546518802225
        • Shimizu T.
        • Samaan M.A.
        • Tanaka M.S.
        • Pedoia V.
        • Souza R.B.
        • Li X.
        • et al.
        Abnormal biomechanics at 6 Months are associated with cartilage degeneration at 3 Years after anterior cruciate ligament reconstruction.
        Arthroscopy. 2019; 35: 511-520https://doi.org/10.1016/j.arthro.2018.07.033
        • Pietrosimone B.
        • Pfeiffer S.J.
        • Harkey M.S.
        • Wallace K.
        • Hunt C.
        • Blackburn J.T.
        • et al.
        Quadriceps weakness associates with greater T1ρ relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2632-2642https://doi.org/10.1007/s00167-018-5290-y
        • Eckstein F.
        • Kwoh C.K.
        • Link T.M.
        Imaging research results from the Osteoarthritis Initiative (OAI): a review and lessons learned 10 years after start of enrolment.
        Ann Rheum Dis. 2014; 73: 1289-1300https://doi.org/10.1136/annrheumdis-2014-205310
        • Robbins S.M.
        • Raymond N.
        • Abram F.
        • Pelletier J.-P.
        • Martel-Pelletier J.
        The effect of alignment on knee osteoarthritis initiation and progression differs based on anterior cruciate ligament status: data from the osteoarthritis initiative.
        Clin Rheumatol. 2019; 38: 3557-3566https://doi.org/10.1007/s10067-019-04759-z
        • Beynnon B.D.
        • Fiorentino N.
        • Gardner-Morse M.
        • Tourville T.W.
        • Slauterbeck J.R.
        • Sturnick D.R.
        • et al.
        Combined injury to the ACL and lateral meniscus alters the geometry of articular cartilage and meniscus soon after initial trauma.
        J Orthop Res. 2020; 38: 759-767https://doi.org/10.1002/jor.24519
        • Wang X.
        • Bennell K.L.
        • Wang Y.
        • Wrigley T.V.
        • Van Ginckel A.
        • Fortin K.
        • et al.
        Tibiofemoral joint structural change from 2.5 to 4.5 years following ACL reconstruction with and without combined meniscal pathology.
        BMC Muscoskel Disord. 2019; 20: 312https://doi.org/10.1186/s12891-019-2687-9
        • Huang W.
        • Ong T.-Y.
        • Fu S.-C.
        • Yung S.-H.
        Prevalence of patellofemoral joint osteoarthritis after anterior cruciate ligament injury and associated risk factors: a systematic review.
        J Orthop Transl. 2020; 22: 14-25https://doi.org/10.1016/j.jot.2019.07.004
        • Culvenor A.G.
        • Cook J.L.
        • Collins N.J.
        • Crossley K.M.
        Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review.
        Br J Sports Med. 2013; 47: 66-70https://doi.org/10.1136/bjsports-2012-091490
        • Culvenor A.G.
        • Eckstein F.
        • Wirth W.
        • Lohmander L.S.
        • Frobell R.
        Loss of patellofemoral cartilage thickness over 5 years following ACL injury depends on the initial treatment strategy: results from the KANON trial.
        Br J Sports Med. February 2019; (bjsports-2018-100167)https://doi.org/10.1136/bjsports-2018-100167
        • Capin J.J.
        • Williams J.R.
        • Neal K.
        • Khandha A.
        • Durkee L.
        • Ito N.
        • et al.
        Slower walking speed is related to early femoral trochlear cartilage degradation after ACL reconstruction.
        J Orthop Res. 2020; 38: 645-652https://doi.org/10.1002/jor.24503
        • Macri E.M.
        • Patterson B.E.
        • Crossley K.M.
        • Stefanik J.J.
        • Guermazi A.
        • Blomqwist E.
        • et al.
        Does patellar alignment or trochlear morphology predict worsening of patellofemoral disease within the first 5 years after anterior cruciate ligament reconstruction?.
        Eur J Radiol. 2019; 113: 32-38https://doi.org/10.1016/j.ejrad.2019.01.033
        • Patterson B.
        • Culvenor A.G.
        • Barton C.J.
        • Guermazi A.
        • Stefanik J.
        • Morris H.G.
        • et al.
        Poor functional performance 1 year after ACL reconstruction increases the risk of early osteoarthritis progression.
        Br J Sports Med. 2020; 54: 546-553https://doi.org/10.1136/bjsports-2019-101503
        • Patterson B.E.
        • Crossley K.M.
        • Perraton L.G.
        • Kumar A.S.
        • King M.G.
        • Heerey J.J.
        • et al.
        Limb symmetry index on a functional test battery improves between one and five years after anterior cruciate ligament reconstruction, primarily due to worsening contralateral limb function.
        Phys Ther Sport. 2020; 44: 67-74https://doi.org/10.1016/j.ptsp.2020.04.031
        • Patterson B.E.
        • Culvenor A.G.
        • Barton C.J.
        • Guermazi A.
        • Stefanik J.J.
        • Crossley K.M.
        Patient-reported outcomes one to five years after anterior cruciate ligament reconstruction: the effect of combined injury and associations with osteoarthritis features defined on magnetic resonance imaging.
        Arthritis Care Res. 2020; 72: 412-422https://doi.org/10.1002/acr.23854
        • Culvenor A.G.
        • Wirth W.
        • Boeth H.
        • Duda G.N.
        • Eckstein F.
        Longitudinal changes in location-specific cartilage thickness and T2 relaxation-times after posterior cruciate ligament reconstruction for isolated and multiligament injury.
        Clin Biomech. December 2019; : 104935https://doi.org/10.1016/j.clinbiomech.2019.12.017
        • Eckstein F.
        • Maschek S.
        • Roemer F.W.
        • Duda G.N.
        • Sharma L.
        • Wirth W.
        Cartilage loss in radiographically normal knees depends on radiographic status of the contralateral knee – data from the Osteoarthritis Initiative.
        Osteoarthritis Cartilage. 2019; 27: 273-277https://doi.org/10.1016/j.joca.2018.10.006
        • Roemer F.W.
        • Eckstein F.
        • Duda G.
        • Guermazi A.
        • Maschek S.
        • Sharma L.
        • et al.
        Osteoarthritis and Cartilage Open Frequencies of MRI-detected structural pathology in knees without radiographic OA and worsening over three years : how relevant is contralateral radiographic osteoarthritis ?.
        Osteoarthr Cartil Open. 2020; 1: 100014https://doi.org/10.1016/j.ocarto.2019.100014
        • Wirth W.
        • Maschek S.
        • Roemer F.W.
        • Sharma L.
        • Duda G.N.
        • Eckstein F.
        Radiographically normal knees with contralateral joint space narrowing display greater change in cartilage transverse relaxation time than those with normal contralateral knees: a model of early OA? – data from the Osteoarthritis Initiative (OAI).
        Osteoarthritis Cartilage. 2019; 27: 1663-1668https://doi.org/10.1016/j.joca.2019.06.013
        • Van Spil W.E.
        • Kubassova O.
        • Boesen M.
        • Bay-Jensen A.-C.
        • Mobasheri A.
        Osteoarthritis phenotypes and novel therapeutic targets.
        Biochem Pharmacol. 2019; 165: 41-48https://doi.org/10.1016/j.bcp.2019.02.037
        • Kraus V.B.
        • Simon L.S.
        • Katz J.N.
        • Neogi T.
        • Hunter D.
        • Guermazi A.
        • et al.
        Proposed study designs for approval based on a surrogate endpoint and a post-marketing confirmatory study under FDA's accelerated approval regulations for disease modifying osteoarthritis drugs.
        Osteoarthritis Cartilage. 2019; 27: 571-579https://doi.org/10.1016/j.joca.2018.11.002
        • Robson E.K.
        • Hodder R.K.
        • Kamper S.J.
        • O'Brien K.M.
        • Williams A.
        • Lee H.
        • et al.
        Effectiveness of weight-loss interventions for reducing pain and disability in people with common musculoskeletal disorders: a systematic review with meta-analysis.
        J Orthop Sports Phys Ther. 2020; 50: 319-333https://doi.org/10.2519/jospt.2020.9041
        • Daugaard C.L.
        • Hangaard S.
        • Bartels E.M.
        • Gudbergsen H.
        • Christensen R.
        • Bliddal H.
        • et al.
        The effects of weight loss on imaging outcomes in osteoarthritis of the hip or knee in people who are overweight or obese: a systematic review.
        Osteoarthritis Cartilage. 2020; 28: 10-21https://doi.org/10.1016/j.joca.2019.10.013
        • Messier S.P.
        • Mihalko S.L.
        • Legault C.
        • Miller G.D.
        • Nicklas B.J.
        • DeVita P.
        • et al.
        Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial.
        J Am Med Assoc. 2013; 310: 1263-1273https://doi.org/10.1001/jama.2013.277669
        • Munugoda I.P.
        • Beavers D.P.
        • Wirth W.
        • Aitken D.A.
        • Loeser R.F.
        • Miller G.D.
        • et al.
        The effect of weight loss on the progression of meniscal extrusion and size in knee osteoarthritis: a post-hoc analysis of the Intensive Diet and Exercise for Arthritis (IDEA) trial.
        Osteoarthritis Cartilage. 2020; 28: 410-417https://doi.org/10.1016/j.joca.2020.01.006
        • Hunter D.J.
        • Beavers D.P.
        • Eckstein F.
        • Guermazi A.
        • Loeser R.F.
        • Nicklas B.J.
        • et al.
        The intensive diet and exercise for arthritis (IDEA) trial: 18-month radiographic and MRI outcomes.
        Osteoarthritis Cartilage. 2015; 23: 1090-1098https://doi.org/10.1016/j.joca.2015.03.034
        • Hochberg M.C.
        • Guermazi A.
        • Guehring H.
        • Aydemir A.
        • Wax S.
        • Fleuranceau-Morel P.
        • et al.
        Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis.
        J Am Med Assoc. 2019; 322: 1360https://doi.org/10.1001/jama.2019.14735
        • Eckstein F.
        • Wax S.
        • Aydemir A.
        • Wirth W.
        • Maschek S.
        • Hochberg M.
        Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of femorotibial location: a post-hoc analysis of a randomized, placebo-controlled phase ii clinical trial.
        Ann Rheum Dis. 2020; 79: 525-528https://doi.org/10.1016/j.joca.2018.02.590
        • Fleischmann R.M.
        • Bliddal H.
        • Blanco F.J.
        • Schnitzer T.J.
        • Peterfy C.
        • Chen S.
        • et al.
        A phase II trial of lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, in Knee Osteoarthritis Patients with Synovitis.
        Arthritis Rheum. 2019; 71: 1056-1069https://doi.org/10.1002/art.40840
        • Conaghan P.G.
        • Bowes M.A.
        • Kingsbury S.R.
        • Brett A.
        • Guillard G.
        • Rizoska B.
        • et al.
        Disease-modifying effects of a novel cathepsin k inhibitor in osteoarthritis: a randomized controlled trial.
        Ann Intern Med. 2020; 172: 86-95https://doi.org/10.7326/M19-0675
        • Cai G.
        • Aitken D.
        • Laslett L.L.
        • Pelletier J.P.
        • Martel-Pelletier J.
        • Hill C.
        • et al.
        Effect of intravenous zoledronic acid on tibiofemoral cartilage volume among patients with knee osteoarthritis with bone marrow lesions: a randomized clinical trial.
        JAMA, J Am Med Assoc. 2020; 323: 1456-1466https://doi.org/10.1001/jama.2020.2938
        • Raeissadat S.A.
        • Ghorbani E.
        • Sanei Taheri M.
        • Soleimani R.
        • Rayegani S.M.
        • Babaee M.
        • et al.
        MRI changes after platelet rich plasma injection in knee osteoarthritis (randomized clinical trial).
        J Pain Res. 2020; 13: 65-73https://doi.org/10.2147/JPR.S204788
        • Filardo G.
        • Di Matteo B.
        • Di Martino A.
        • Merli M.L.
        • Cenacchi A.
        • Fornasari P.
        • et al.
        Platelet-rich plasma intra-articular knee injections show No superiority versus viscosupplementation: a randomized controlled trial.
        Am J Sports Med. 2015; 43: 1575-1582https://doi.org/10.1177/0363546515582027
        • Zhao X.
        • Ruan J.
        • Tang H.
        • Li J.
        • Shi Y.
        • Li M.
        • et al.
        Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells.
        Stem Cell Res Ther. 2019; 10: 308https://doi.org/10.1186/s13287-019-1406-7
        • Garza J.R.
        • Campbell R.E.
        • Tjoumakaris F.P.
        • Freedman K.B.
        • Miller L.S.
        • Santa Maria D.
        • et al.
        Clinical efficacy of intra-articular mesenchymal stromal cells for the treatment of knee osteoarthritis: a double-blinded prospective randomized controlled clinical trial.
        Am J Sports Med. 2020; 48: 588-598https://doi.org/10.1177/0363546519899923
        • Lu L.
        • Dai C.
        • Zhang Z.
        • Du H.
        • Li S.
        • Ye P.
        • et al.
        Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial.
        Stem Cell Res Ther. 2019; 10: 143https://doi.org/10.1186/s13287-019-1248-3
        • Hong Z.
        • Chen J.
        • Zhang S.
        • Zhao C.
        • Bi M.
        • Chen X.
        • et al.
        Intra-articular injection of autologous adipose-derived stromal vascular fractions for knee osteoarthritis: a double-blind randomized self-controlled trial.
        Int Orthop. 2019; 43: 1123-1134https://doi.org/10.1007/s00264-018-4099-0
        • Lee W.-S.
        • Kim H.J.
        • Kim K.-I.
        • Kim G.B.
        • Jin W.
        Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial.
        Stem Cells Transl Med. 2019; 8: 504-511https://doi.org/10.1002/sctm.18-0122
        • Kim S.H.
        • Ha C.-W.
        • Park Y.-B.
        • Nam E.
        • Lee J.-E.
        • Lee H.-J.
        Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials.
        Arch Orthop Trauma Surg. 2019; 139: 971-980https://doi.org/10.1007/s00402-019-03140-8
        • Borić I.
        • Hudetz D.
        • Rod E.
        • Jeleč Ž.
        • Vrdoljak T.
        • Skelin A.
        • et al.
        A 24-month follow-up study of the effect of intra-articular injection of autologous microfragmented fat tissue on proteoglycan synthesis in patients with knee osteoarthritis.
        Genes. 2019; 10https://doi.org/10.3390/genes10121051
        • Laslett L.L.
        • Antony B.
        • Wluka A.E.
        • Hill C.
        • March L.
        • Keen H.I.
        • et al.
        KARAOKE: Krill oil versus placebo in the treatment of knee osteoarthritis: protocol for a randomised controlled trial.
        Trials. 2020; 21: 79https://doi.org/10.1186/s13063-019-3915-1
        • Wang Y.
        • Hussain S.M.
        • Wluka A.E.
        • Lim Y.Z.
        • Abram F.
        • Pelletier J.-P.
        • et al.
        Association between metformin use and disease progression in obese people with knee osteoarthritis: data from the Osteoarthritis Initiative-a prospective cohort study.
        Arthritis Res Ther. 2019; 21: 127https://doi.org/10.1186/s13075-019-1915-x
        • Haj-Mirzaian A.
        • Mohajer B.
        • Guermazi A.
        • Conaghan P.G.
        • Lima J.A.C.
        • Blaha M.J.
        • et al.
        Statin use and knee osteoarthritis outcome measures according to the presence of heberden nodes: results from the osteoarthritis initiative.
        Radiology. 2019; 293: 396-404https://doi.org/10.1148/radiol.2019190557
        • Bricca A.
        • Wirth W.
        • Juhl C.B.
        • Kemnitz J.
        • Hunter D.J.
        • Kwoh C.K.
        • et al.
        Moderate physical activity may prevent cartilage loss in women with knee osteoarthritis: data from the Osteoarthritis Initiative.
        Arthritis Care Res. 2018; (0-3)https://doi.org/10.1002/acr.23791
        • Van Ginckel A.
        • Hinman R.S.
        • Wrigley T.V.
        • Hunter D.J.
        • Marshall C.J.
        • Duryea J.
        • et al.
        Effect of cane use on bone marrow lesion volume in people with medial tibiofemoral knee osteoarthritis: randomized clinical trial.
        Osteoarthritis Cartilage. 2019; 27: 1324-1338https://doi.org/10.1016/j.joca.2019.05.004
        • Moyer R.
        • Birmingham T.
        • Eckstein F.
        • Wirth W.
        • Maschek S.
        • Chronik B.
        • et al.
        Validation of a novel blinding method for measuring postoperative knee articular cartilage using magnetic resonance imaging.
        Magma. 2019; 32: 693-702https://doi.org/10.1007/s10334-019-00766-y
        • Jansen M.P.
        • Mastbergen S.C.
        • van Heerwaarden R.J.
        • Spruijt S.
        • van Empelen M.D.
        • Kester E.C.
        • et al.
        Knee joint distraction in regular care for treatment of knee osteoarthritis: a comparison with clinical trial data.
        PloS One. 2020; 15e0227975https://doi.org/10.1371/journal.pone.0227975
        • Intema F.
        • Van Roermund P.M.
        • Marijnissen AC a
        • Cotofana S.
        • Eckstein F.
        • Castelein R.M.
        • et al.
        Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study.
        Ann Rheum Dis. 2011; 70 (1468-2060 (Electronic)): 1441-1446https://doi.org/10.1136/ard.2010.142364
        • van der Woude J.T.A.D.
        • Wiegant K.
        • van Roermund P.M.
        • Intema F.
        • Custers R.J.H.
        • Eckstein F.
        • et al.
        Five-Year follow-up of knee joint distraction: clinical benefit and cartilaginous tissue repair in an open uncontrolled prospective study.
        Cartilage. 2017; 8: 263-271https://doi.org/10.1177/1947603516665442
        • Jansen M.P.
        • Besselink N.J.
        • van Heerwaarden R.J.
        • Custers R.J.H.
        • Emans P.J.
        • Spruijt S.
        • et al.
        Knee joint distraction compared with high tibial osteotomy and total knee arthroplasty: two-year clinical, radiographic, and biochemical marker outcomes of Two randomized controlled trials.
        Cartilage. February 2019; (1947603519828432)https://doi.org/10.1177/1947603519828432
        • Besselink N.J.
        • Vincken K.L.
        • Bartels L.W.
        • van Heerwaarden R.J.
        • Concepcion A.N.
        • Marijnissen A.C.A.
        • et al.
        Cartilage quality (dGEMRIC index) following knee joint distraction or high.
        Tibial Osteotomy. Cartilage. 2020; 11: 19-31https://doi.org/10.1177/1947603518777578
        • Nozaka K.
        • Miyakoshi N.
        • Kashiwagura T.
        • Kasukawa Y.
        • Saito H.
        • Kijima H.
        • et al.
        Effectiveness of distal tibial osteotomy with distraction arthroplasty in varus ankle osteoarthritis.
        BMC Muscoskel Disord. 2020; 21: 31https://doi.org/10.1186/s12891-020-3061-7
        • Byra M.
        • Wu M.
        • Zhang X.
        • Jang H.
        • Ma Y.J.
        • Chang E.Y.
        • et al.
        Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning.
        Magn Reson Med. 2020; 83: 1109-1122https://doi.org/10.1002/mrm.27969
        • Brui E.
        • Efimtcev A.Y.
        • Fokin V.A.
        • Fernandez R.
        • Levchuk A.G.
        • Ogier A.C.
        • et al.
        Deep learning-based fully automatic segmentation of wrist cartilage in MR images.
        NMR Biomed. 2020; https://doi.org/10.1002/nbm.4320
        • Cheng R.
        • Alexandridi N.A.
        • Smith R.M.
        • Shen A.
        • Gandler W.
        • McCreedy E.
        • et al.
        Fully automated patellofemoral MRI segmentation using holistically nested networks: implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development.
        Magn Reson Med. 2020; 83: 139-153https://doi.org/10.1002/mrm.27920
        • Bowes M.A.
        • Guillard G.A.
        • Vincent G.R.
        • Brett A.D.
        • Wolstenholme C.B.H.
        • Conaghan P.G.
        Precision, reliability, and responsiveness of a novel automated quantification tool for cartilage thickness: data from the osteoarthritis initiative.
        J Rheumatol. 2020; 47: 282-289https://doi.org/10.3899/jrheum.180541
        • Schmaranzer F.
        • Helfenstein R.
        • Zeng G.
        • Lerch T.D.
        • Novais E.N.
        • Wylie J.D.
        • et al.
        Automatic MRI-based three-dimensional models of hip cartilage provide improved morphologic and biochemical analysis.
        Clinical Orthopaedics and Related Research. vol. 477. Lippincott Williams and Wilkins, 2019: 1036-1052https://doi.org/10.1097/CORR.0000000000000755
        • Gaj S.
        • Yang M.
        • Nakamura K.
        • Li X.
        Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
        Magn Reson Med. 2020; 84: 437-449https://doi.org/10.1002/mrm.28111
        • Desai A.D.
        • Caliva F.
        • Iriondo C.
        • Khosravan N.
        • Mortazi A.
        • Jambawalikar S.
        • et al.
        The international workshop on osteoarthritis imaging knee MRI segmentation challenge: a multi-institute evaluation and analysis framework on a standardized dataset.
        Archiv. 2020; ([preprint])
        • Fukushima K.
        Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.
        Biol Cybern. 1980; 36: 193-202https://doi.org/10.1007/BF00344251
        • Pedoia V.
        • Norman B.
        • Mehany S.N.
        • Bucknor M.D.
        • Link T.M.
        • Majumdar S.
        3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects.
        J Magn Reson Imag. 2019; 49: 400-410https://doi.org/10.1002/jmri.26246
        • Eckstein F.
        • Collins J.E.
        • Nevitt M.C.
        • Lynch J.A.
        • Kraus V.
        • Katz J.N.
        • et al.
        Cartilage thickness change as an imaging biomarker of knee osteoarthritis progression - data from the fnih OA biomarkers consortium.
        Arthritis Rheum. 2015; 67: 3184-3189https://doi.org/10.1002/art.39324
        • Chaudhari A.S.
        • Stevens K.J.
        • Wood J.P.
        • Chakraborty A.K.
        • Gibbons E.K.
        • Fang Z.
        • et al.
        Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers.
        J Magn Reson Imag. 2020; 51: 768-779https://doi.org/10.1002/jmri.26872
        • Qiu D.
        • Zhang S.
        • Liu Y.
        • Zhu J.
        • Zheng L.
        Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
        Comput Methods Progr Biomed. 2020; : 187https://doi.org/10.1016/j.cmpb.2019.105059
        • Li M.D.
        • Chang K.
        • Bearce B.
        • Chang C.Y.
        • Huang A.J.
        • Campbell J.P.
        • et al.
        Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging.
        npj Digit Med. 2020; 3https://doi.org/10.1038/s41746-020-0255-1
        • Schwartz A.J.
        • Clarke H.D.
        • Spangehl M.J.
        • Bingham J.S.
        • Etzioni D.A.
        • Neville M.R.
        Can a convolutional neural network classify knee osteoarthritis on plain radiographs as accurately as fellowship-trained knee arthroplasty surgeons?.
        J Arthroplasty. April 2020; https://doi.org/10.1016/j.arth.2020.04.059
        • Chang G.H.
        • Felson D.T.
        • Qiu S.
        • Guermazi A.
        • Capellini T.D.
        • Kolachalama V.B.
        Assessment of knee pain from MR imaging using a convolutional Siamese network.
        Eur Radiol. 2020; 30: 3538-3548https://doi.org/10.1007/s00330-020-06658-3
        • Morales Martinez A.
        • Caliva F.
        • Flament I.
        • Liu F.
        • Lee J.
        • Cao P.
        • et al.
        Learning osteoarthritis imaging biomarkers from bone surface spherical encoding.
        Magn Reson Med. 2020; 84https://doi.org/10.1002/mrm.28251
        • Tiulpin A.
        • Klein S.
        • Bierma-Zeinstra S.M.A.
        • Thevenot J.
        • Rahtu E.
        • Meurs J van
        • et al.
        Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data.
        Sci Rep. 2019; 9https://doi.org/10.1038/s41598-019-56527-3
        • Leung K.
        • Zhang B.
        • Tan J.
        • Shen Y.
        • Geras K.J.
        • Babb J.S.
        • et al.
        Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative.
        Radiology. June. 2020; : 192091https://doi.org/10.1148/radiol.2020192091
        • Tolpadi A.A.
        • Lee J.J.
        • Pedoia V.
        • Majumdar S.
        Deep learning predicts total knee replacement from magnetic resonance images.
        Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-63395-9