Multicolor flow cytometry-based cellular phenotyping identifies osteoprogenitors and inflammatory cells in the osteoarthritic subchondral bone marrow compartment

B.E. Pippenger † a b, R. Duhr ‡ §§ a, M.G. Muraro † §§, G.I. Pagenstert †, T. Hügle †, J. Geurts † *

† Osteoarthritis Research Center Basel, Orthopaedic Department, University Hospital Basel, Basel, Switzerland
‡ Department of Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
§ Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland

Article info
Article history:
Received 19 December 2014
Received in revised form 10 July 2015
Accepted 20 July 2015

Keywords:
Subchondral bone
Flow cytometry
Osteoarthritis
Osteoprogenitors
Inflammation

SUMMARY
Purpose: The cellular component of subchondral bone is thought to be responsible for aberrant bone remodeling in osteoarthritis (OA). Direct phenotypical analysis of the cellular compartment is critical to better understand the OA disease process. This study provides proof-of-principle for flow cytometry-based phenotyping of isolated subchondral trabecular bone (STB) marrow cells without prior use of cell culture techniques.

Methods: Tibial plateaus were obtained from OA patients undergoing total knee arthroplasty. Subchondral bone chips were digested with collagenase IA and single cell suspensions were directly phenotyped using flow cytometry. Cells were analyzed for the expression of alkaline phosphatase (ALP) as osteoblast/osteoprogenitor marker and monocyte/macrophage markers (CD14, CD68, HLA-DR, CD115).

Results: MTT staining revealed abundant viable cells in the bone marrow compartment of STB prior to digestion, which were efficiently released by collagenase. Within the CD45-negative cell fraction, approximately 20% of the cells were positive for the early osteoblast/osteoprogenitor marker ALP. Within the CD45+ hematopoietic cell fraction, the majority of cells were of monocytic origin (>80%) displaying strong surface expression of CD14. Discreet macrophage populations (CD14+/HLA-DR+/CD68+) and putative osteoclast progenitors (CD45+/HLA-DR−/CD115+) were unequivocally identified. Osteoblast, macrophage and osteoclast progenitor presence in the subchondral bone unit (SBU) was confirmed by (immuno)histochemical staining for osteocalcin, CD68 and tartrate-resistant acid phosphatase, respectively.

Conclusions: Flow cytometric analysis is a valuable methodology to study the cellular compartment of STB marrow. This method provides a proof of principle that the whole resident cell population can be directly phenotypically characterized without the prior use of cell culture techniques.

© 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction
The subchondral bone unit (SBU) is comprised of the subchondral cortical plate and the directly subjacent subchondral trabecular bone (STB) and marrow spaces. Clinically, it is well established that the molecular crosstalk between the cells in the SBU and the overlying cartilage plays a pivotal role in osteoarthritis (OA) disease progression and, potentially, induction 1,2. A hallmark of OA progression is osteosclerosis of the subchondral bone and it has recently been demonstrated that this shift towards increased bone formation results from an uncoupling of the activities of osteoblasts and osteoclasts within the trabecular marrow compartment of the SBU 3. As the cellular component of the SBU is thought to be responsible for the structural changes in this tissue 4, direct phenotypical analysis of the subchondral trabecular marrow compartment is critical to better understand the OA disease process.
Current techniques to analyze cellular components of the SBU, including histology, explant outgrowth cultures and real-time-PCR, have helped to identify and characterize the pathological bone remodeling in the osteoarthritic SBU, but several limitations exist, e.g., loss of cell types, mix of subpopulations, changes due to in vitro culture methods. Advanced flow cytometry techniques have been used to phenotypically characterize and isolate cells from a variety of soft tissues, including outgrowth cells from bone fragments, but to our knowledge it has never been demonstrated on cells directly isolated from the subchondral trabecular marrow compartment. Recent developments in novel fluorescent markers combined with technological advancements on flow cytometer capacities now allow users to simultaneously identify and characterize multiple complex cell phenotypes. The ability to further separate cells based on phenotype and compare between healthy and diseased tissues allows for a concerted analysis of cellular functions and mechanisms.

In the present study, we assessed the feasibility of using flow cytometry as a tool to identify individual cell populations released by collagenase digestion from the marrow compartment of human subchondral bone from osteoarthritic knee tibialplateaus.

Materials and methods

Patients

Tibial plateaus were collected after written informed consent from five patients (three female, two male, mean age 68 ± 9 years) undergoing total knee arthroplasty. The study protocol was approved by the Ethics Committee of Basel (No. 147/12).

Marrow cell extraction

Freshly obtained tibial plateaus were rinsed twice in PBS and cartilage was carefully dissected from the subchondral cortical plate under a stereomicroscope (Leica, Germany). Sagittal bone slices (1 mm width, approximately 1 g wet weight in total) were digested in 8 mL zMEM supplemented with 0.6 mg/ml clostridial collagenase IA (Sigma, Switzerland). Samples were digested on an orbital shaker set to 60 rpm for 4 h at 37°C. Thereafter the digestion medium was collected and bone pieces were thoroughly rinsed once with PBS, which was then added to the cell suspension. Where indicated, CD45⁻ cells were isolated by magnetic bead separation following manufacturer’s instructions (EasySep human CD45 depletition kit, Stemcell Technologies, USA).

MTT staining

Pre- and post-digest bone chips were stained for the presence of viable cells with 50 μg/ml of MTT (Sigma) diluted in DMEM with no phenol red (Gibco, USA) for 1 h at 37°C. After rinsing with PBS, samples were imaged using a stereomicroscope (Leica, Germany).

Antibodies

Antibodies used for flow cytometric analysis were PE-conjugated anti-C115 (9-4D2-1E4), PerCP/Cy5.5-conjugated anti-HLA-DR (L243), APC-conjugated anti-CD68 (Y1/82A), PE/Cy7-conjugated anti-CD14 (HCD14) and Brilliant Violet 421-conjugated anti-CD45 (84-78) was from BD Pharmingen (USA), FITC-conjugated anti-CD68 (H30) was from Tonbo Biosciences (USA). The mouse monoclonal antibodies used for immunohistochemical analysis were anti-human CD68 (PG-M1, Dako, Switzerland) and anti-human osteocalcin (OOG3, Abcam, UK).

Multicolor flow cytometric analysis

The cell suspension was centrifuged at 350 g for 5 min, the pellet resuspended in FACS buffer (PBS, 2 mM EDTA, 0.1% BSA) and incubated for 10 min in Human TruStain FCX (Biolegend, USA) to block nonspecific Fc receptor binding. Cell surface markers were stained for 30 min at room temperature in FACS buffer using antibody dilutions according to the manufacturer’s instructions. Thereafter, cells were fixed and permeabilized in Flow Cytometry Fixation/Permeabilization Buffer I (R&D Systems) and stained intracellularly with anti-CD68. Samples were stained with DAPI (3 μM in FACS buffer) for 15 min to distinguish cells from debris. Single-stained compensation beads (BD Biosciences) were used for multicolor compensation. Positive and negative selection gates were set using fluorescence minus one controls and unstained cells, respectively. Cells were analyzed on a LSRFortessa (BD Biosciences). Data were analyzed using Flowjo v10.0.7 (Tree Star Inc., USA).

Histology and immunohistochemistry

Formalin-fixed, decalcified tibial plateaus were processed for cryosectioning as described previously. Sagittal cryosections (12 μm) were stained with hematoxylin and eosin for analysis of marrow morphology. After antigen retrieval (10 mM citrate buffer pH 6.0 at 70°C for 30 min) cryosections (12 μm) were stained with anti-CD68 (1:100) at room temperature for 1 h. Osteocalcin staining was performed overnight without antigen retrieval at a dilution of 1:200. Primary antibodies were visualized using a mouse-specific DAB/HRP (ABC) Detection IHC Kit (Abcam, UK). Tartrate-resistant acid phosphatase staining was performed by incubating cryosections for 1 h at 37°C in staining buffer containing 0.1 M acetate pH 5.2, 50 mM sodium tartrate, 0.1 mg/ml naphthol AS-MX and 0.3 mg/ml fast red LB violet salt (Sigma).

Results

Collagenase digestion releases CD45-negative and CD45-positive marrow cell fractions from the osteoarthritic STB

The marrow compartment of the STB in osteoarthritic tibial plateaus is histologically characterized by high cellularity and fibrous tissue (Fig. 1A). MTT staining of trimmed bone pieces revealed abundant viable cells in the marrow compartment prior to collagenase IA digestion. The vast majority of marrow-residing cells were released after four hours of digestion. (Fig. 1B). The obtained cells were largely viable (not shown) and their number sufficient for further testing. The analysis of flow cytometry data consisted in a first step of discriminating DAPI positive events, identified as nucleated cells, from DAPI negative bone debris. Doublets and artifacts were removed by gating only events in the diagonal cluster of a forward scatter height (FSC-H) vs forward scatter area (FSC-A) plot. The presence of cell types of both hematopoietic and non-hematopoietic origin was revealed from staining against CD45 (Fig. 1C).

Monocytes, macrophages and osteoclast progenitors reside in the CD45⁺ marrow cell fraction

The precise identity of different cell populations within the hematopoietic cell fraction was determined by additional markers. The majority (> 80%) of CD45⁺ cells were identified as CD14⁺/CD68⁻ monocytes and part were double positive CD14⁺/CD68⁺ macrophages. Complementary immunostaining for CD68 in histological tissue sections confirmed the presence of mononuclear macrophages in the osteoarthritic subchondral trabecular marrow.
compartment (Fig. 2A). A discreet CD45+/HLA-DR−/CD115− subpopulation, which is known to contain osteoclast progenitor cells, could be identified in isolated marrow cells. Histochemical staining demonstrated the presence of multinucleated TRAP+ osteoclasts on the bone surface and mononuclear TRAP+ cells (Fig. 2B).

Osteoprogenitors/early osteoblasts reside in the CD45-marrow cell fraction of osteoarthritic STB

Approximately twenty percent of the CD45-cell fraction stained positive for alkaline phosphatase (ALP), a marker for osteoprogenitor cells and early osteoblasts. Active osteoblasts were identified by complementary immunostaining as osteocalcin-positive bone lining and marrow cells in osteoarthritic subchondral marrow spaces (Fig. 2C).

Discussion

Subchondral bone remodeling takes place at the basic multicellular unit (BMU), a complex anatomical structure that consists of bone-forming osteoblasts, bone-resorbing osteoclasts, mechanosensing osteocytes, blood capillaries and various bone marrow resident cells including macrophages, immune cells and mesenchymal stromal cells. Currently, it is thought that concerted cellular interactions present in the SBU directly influence the onset and/or progression of osteosclerosis, but direct cellular characterization of this compartment is difficult. In the present study, we demonstrated the feasibility of flow cytometric analysis of subchondral bone digests for detailed characterization of different cell populations residing in the marrow tissue directly subjacent to subchondral bone in osteoarthritic knee tibial plateaus.

While we have demonstrated proof-of-principle for flow cytometry-based identification of distinct cell populations in OA subchondral bone digests, there are limitations to the technique that need to be considered. Explanted joint samples still contain blood vessels including peripheral blood mononuclear cells (monocytes, lymphocytes), which will be released upon digestion and are mixed with the resident marrow populations. Gentle rinsing of bone chips in PBS pre-digestion and red blood cell lysis of obtained cell suspensions might be required to minimize these sources of cellular contamination. Moreover, the large amount of bone debris with high autofluorescence in digested cell suspensions required the use of permeabilization and DAPI to clearly identify cells in flow cytometry and might interfere with optimal staining using multiple antibodies. Positive selection of hematopoietic and mesenchymal cell populations using routine magnetic cell separation techniques prior to staining protocols can help in clearance of debris and greatly reduce non-cellular events in flow cytometry analysis. Without the need for permeabilization, cell populations could be further separated using fluorescence- activated cell sorting, opening the perspective for further gene expression or functional analysis. Lastly, in order to quantitatively compare subchondral bone phenotypes (i.e., nonsclerotic and sclerotic) and assess disease-specificity of our findings, tibial plateau samples from a larger cohort of OA and healthy patients and the use of counting beads to measure absolute cell numbers will be required.

For direct cellular phenotyping of the STB marrow compartment, flow cytometry analysis is a valuable complementary tool to immunohistochemistry for cellular phenotyping and semi-quantitative analysis of cell populations. Multiple staining protocols, i.e., using peroxidase and ALP-labeled secondary antibodies,
for colocalization in immunohistochemistry are very challenging and immunofluorescent microscopy of bone and marrow tissues is complicated by autofluorescence due to collagen. Flow cytometry enables such analyses and offers the opportunity to discriminate cell population based on exclusion of markers. Relative quantification of cell populations can be reliably obtained by flow cytometry, while immunohistochemical stainings are regularly assessed using semi-quantitative rank scores. Combining the capacities for precise phenotyping and relative quantitation by flow cytometry with accurate structural localization by immunohistochemistry, these methods could provide valuable insights into the relative cellular quantities present in the marrow compartment of both healthy and diseased SBU.

Valuable insight into the cellular mechanisms of OA bone remodeling has been recently obtained from an experimental OA model, showing that increased osteoclast-mediated subchondral bone resorption leads to enhanced migration of osteoprogenitors and formation of osteoid islets in marrow spaces. In humans,
circulating osteoclast progenitors have been described in OA patients and CD68+ multinucleated osteoclasts were detected by immunohistochemistry at the osteoarthritic osteochondral junction. Inflammatory cells, particularly mononuclear CD68+ macrophages and sparse CD3+ lymphocytes have been demonstrated in subchondral marrow tissue from osteoarthritic knee tibial plateaus. This study confirms the presence of osteoprogenitors (CD45+/ALP+), osteoclast progenitors (CD45+/HLA-DR-/CD115+), monocytes (CD45+/CD14+/CD68−) and macrophages (CD45+/CD14+/CD68+) for the first time through a direct flow cytometric phenotyping method of subchondral trabecular marrow tissues. The CD14+ monocyte population identified here comprises marrow residing and blood circulating cells, which will need to be further distinguished via their CD16 expression. Lymphocytes were not identified by analysis for CD3 expression, but might reside in the CD14+/CD68− cell fraction that comprised approximately five percent of CD45+ cells. The precise identity of CD45−/ALP− cells, comprising the majority non-hematopoietic cells, needs further investigations. Differentiated mature osteoblasts, mesenchymal stromal cells and vascular cells are expected to reside in this particular fraction. Fujita and co-workers have demonstrated that CD45−/ ALP− cells released by collagenase from bone biopsies indeed possess an osteoblast phenotype and are able to mineralize in vitro.

In conclusion, this study provides a proof-of-principle that cells isolated from the human subchondral bone marrow compartment can be directly phenotypically characterized by flow cytometry without prior use of cell culture techniques. Phenotypical analysis based on the simultaneous use of up to five different markers allowed for the determination of osteoblasts/osteoprogenitors, osteoclast progenitors, macrophages and monocytes and their presence was confirmed by immunohistochemistry.

Author’s contribution

Study conception and design: BP, RD, MM, TH, JG.
Data collection and assembly: BP, RD, MM, GP, TH, JG.
Analysis and interpretation of data: BP, RD, TH, JG.
Drafting and finally approving the article: BP, RD, MM, GP, TH, JG.
Jeroen Geurts takes responsibility for the integrity of the work as a whole.

Role of the funding source

This study was supported by a grant from the Gottfried and Julia Bangerter-Rhyner Foundation to JG and by the Fonds National de la Recherche, Luxembourg (4090751) to RD. The funding source had no involvement in study design, data acquisition, and drafting of the manuscript.

Competing interests

The authors declare that they have no competing interests.

References